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Abstract: We extend proofs of non-Gibbsianness of decimated Gibbs measures at low
temperatures to include long-range, as well as vector-spin interactions. Our main tools consist
in a two-dimensional use of “Equivalence of boundary conditions” in the long-range case and
an extension of Global specifications for two-dimensional vector spins.
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1 Introduction

1.1 Questions on Preservation of Gibbsianness under Decimation;
Background on related Issues and Strategy

In this paper, we extend the study of Gibbsian and in particular non-Gibbsian properties
of decimated measures. Decimation transformations form an example of Renormalisation
Group transformations. Such Renormalisation Group transformations, widely considered in
the physics literature, are supposed to be well-defined on interactions or interaction param-
eters. Although this well-definedness is fairly immediate for hierarchical models [12, 89],
mathematically, on ordinary lattices for most of the transformations used in practice- for
the study of critical behaviour- this existence issue is not obvious. Decimation transforma-
tions form one of the cleanest examples to illustrate these points on. The issue was first
raised and analysed by Griffiths and Pearce and by Israel, and later systematically studied,
and interpreted as the possibility of transformed measures to be non-Gibbsian in [41]. The
Griffiths-Pearce peculiarities (pathologies) were first presented in [78, 79], for Israel’s analysis
and example, see [87].

As was shown there, at high temperature or in strong external fields the transformations are
well-defined; it turned out later that even in some cases around the critical points decimated
Ising and rotator models tend to be Gibbsian. For those results see in particular [80, 90]. Only
for Potts models, and similarly for very nonlinear rotator models, it is known or expected
that non-Gibbsianness occurs for decimated measures around the transition temperature. See
[42, 51].

In this paper, however, we are mainly considering the low-temperature regimes. We note
that analogous Gibbs-non-Gibbs questions have been considered for Gibbs measures which
evolved under stochastic evolutions, like Glauber or interaction diffusion dynamics, or for
coarse-graining maps; this included some results for vector spins. Also more recently, one-
dimensional long-range Ising models were considered. For some of those results, see [48, 49,
28, 44, 94, 45, 46, 91].

Here we extend these results; we will consider decimation on even sublattices, acting on
two-dimensional long-range models, for both Ising and vector spins, for which the strategy of
the proofs for the Ising model can be straightforwardly generalised. In particular, the alternat-
ing configuration of decimated (visible) sites will be a point of discontinuity for the conditional
probabilities of the decimated measure –a bad configuration –, because conditioned on it, the
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model on invisible sites is equal to the original model on a periodically dilute, or “decorated”
lattice, and has a phase transition at low enough temperatures.

As a tool to be used, we will extend to the rotator-spin context the concept of Global
Specifications, which were shown to exist for Ising ferromagnets in [54]. In a forthcoming Part
II, we will consider borderline cases, where the Mermin-Wagner theorem prevents symmetry-
breaking in the original model, but nonetheless non-Gibbsian behaviour applies, more similarly
to what happens in stochastically evolved measures [48, 49, 45].
In those models, the alternating configuration will not lead to a phase transition of the con-
ditioned model, however, and the search for “bad” configurations is somewhat more involved.
Also the conditioned models will have phase transitions of different types (spin-flop); this
occurrence of different types of transitions is also similar to what happens in the mean-field
context for stochastic evolutions of Curie-Weiss Ising model [93].

Following the general approach of [41] (hereafter “the EFS approach”), one wants to
show that the conditional expectation of some image microscopic variable (spin) at a fixed
site (which may be taken to be the origin) is essentially discontinuous as a function of the
boundary condition. In the EFS approach one goes through the following steps:

Step 0: One divides spins into “visible” ones (or renormalised, or evolved, or simply primed)
and “invisible” ones (to be integrated out, initial, or non-primed). Then one considers
the marginal measure on the visible spins (i.e. the renormalised, evolved, or primed
measure). In this paper we shall consider the decimation transformation and consider
the spins on a periodic sublattice. Non-Gibbsianness is thus obtained via a Conditioned
Phase Transition; (invisible Long-Range Order shows up as a visible Nonlocality).

Step 1: Conditioning events on infinite subgraphs is not immediate, but it may be allowed either
by the existence of a Global Specification, or by the existence of a well-defined condi-
toning procedure which can be checked by hand. Global Specifications were originally
introduced as part of the results of Fernández-Pfister for monotone attractive specifica-
tions for Ising spins (see [54], §3.1). In this paper we shall pursue this latter path and
extend the approach of Fernández-Pfister to vector spins.

Step 2: Phase transition.

Conditioned on some “bad” visible configuration there should be a phase transition
(that is, different coexisting Gibbs measures) for the invisible spins (phase transitions
can be of different types, original spin-flip, spin-flop, etc.), and this is model-dependent.
Notably, such a transition can also happen when the original model has no transition. In
this paper we shall consider various models with long-range interactions which extends
ideas from analysis of earlier 1d long-range and 2d-n.n. models [41, 46]. In a part II
companion paper we will analyse cases where the situation about the phase transition
of the conditioned system will be different compared to the unconditioned one, as also
occurred in [48].

Remark 2a: Positive results are available about Gibbsianness of transformed measures, via Absence
of Phase Transitions. For example strong absence of phase transitions for all visible
configurations implies Gibbsianness, see e.g. Kennedy et al. [80, 91], Olivieri et al. [10].
More recently such derivations were extended, and Gibbsian properties were derived also
under weaker conditions, by Berghout and Verbitskiy [8, 9].
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Step 3: Selection.

Visible-spin configurations in an annulus around the volume under consideration should
be “good” and be able to select an invisible unique phase in the annulus, which then
acts similarly to pure boundary conditions. Conditioned on such pure-phase-like visible
spins everywhere we have infinite-volume uniqueness of Gibbs measure on invisible spins.
This is usually direct on lattices, but can be problematic e.g. on trees. (see e.g. [40]),
or –as also will be a problem in the next item– when the visible and invisible spins are
decoupled. Uniqueness can follow either from a Lee-Yang argument, or from a contour
argument along the lines of Pirogov-Sinai theory.

Step 3a: Extra step in long-range models, leading to a need for growing annuli:
A wide annulus is needed for screening effects.
The annulus should be chosen wide enough, such that on the one hand the direct in-
teraction between the volume inside and the region outside the annulus is (uniformly)
small. This argument is similar to Equivalence of Boundary Conditions.
On the other hand, the uniqueness of the invisible Gibbs state in the annulus shields
the indirect influence which can be transmitted from the region outside the annulus to
the volume inside via the invisible spins in the annulus.
This second requirement may or may not require a wide annulus in short-range models.
The first requirement for a wide annulus is specific, and always needed, for long-range
models.

Step 4: Unfix the origin.

Then the choice of the invisible phase, conditioned on all other visible spins influences
expectation of visible spin at origin. Usually this poses no problem, but can be problem-
atic, if, for example, visible (primed) and invisible (non-primed) spins are not coupled
-independent-.

1.2 Summary of Results

In this paper we give several non-Gibbs results at low temperatures, as follows (by increasing
order of complexity/peculiarity) :

• Decimation of the 2d long-range Ising model

In this context, we extend the results of non-Gibbsianness at low temperatures, previ-
ously known in 2d (and higher d) for n.n. models and in 1d for long-range models, to
various long-range models. In addition to the standard procedure recalled in the intro-
duction, this amounts to control the long-range effects by energy estimates, adapted to
each model, in order to also use an argument to control the direct influence from afar,
similarly to the equivalence of boundary conditions concept coined by Bricmont et al.
and then conclude as in the simpler 2d-n.n. case.

The long-range Ising models for which we prove it here are the following:

- Bi-axial n.n.-long-range Ising models (α1 > 1) :

Bad configuration : alternating ω′alt = (−1)i1+i2 for any site i = (i1, i2)

Ferromagnetic couplings considered : (d = 2, α1 > 1) : J ≥ 0,

Jn.n.,α1(i, j) := J · 1|i−j|=1 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0
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We get non-Gibbsianness at low enough temperatures for all α1 > 1.

- Axially long-range Ising models (possibly anisotropic α1 6= α2) :

Bad configuration : alternating ω′alt = (−1)i1+i2 for any site i = (i1, i2),

Ferromagnetic couplings considered : (d = 2, α1, α2 > 1) : J ≥ 0,

Jα1,α2(i, j) := J · |i2 − j2|−α2 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0

We get non-Gibbsianness at low enough temperatures or all α1, α2 > 1

- Isotropic long-range Ising models :

Bad configuration : alternating ω′alt = (−1)i1+i2 for any site i = (i1, i2)

Ferromagnetic couplings considered : (d = 2, α > 2) : J ≥ 0,

J iso,α(i, j) := J · |i1 − j1|−α · 1|i2−j2|=0

We get non-Gibbsianness at low enough temperatures for all α > 2.

• Decimation of anisotropic/long-range rotator models with phase transitions

Then we turn to the extension of non-Gibbsianness in the case of 2d rotator models.
The crucial advantage of the fact that we consider two-dimensional vector spins in our
ferromagnetic context is the stochastic ordering which occurs, which will allow a proper
extension of the local specification into a global one (see next section).

- 2d-n.n. Anisotropic rotator models

Here we know that a phase transition with only two extremal measures occurs, with
some possible stochastic ordering, and this allows to extend the existing 2d-n.n. proof
[41] using global specifications as in [102]. This original proof does not require energy
estimates or equivalence of b.c., as the specification is Markov.

Bad configuration : alternating ω′alt with angle θi = (−1)i1+i2 π
2 for any site i = (i1, i2)

Ferromagnetic Pair potential : ΦA = 0 unless A = {i, j}, |i− j| = 1, κ ∈ (0, 1) and

Φ{i,j}(
⇀σ) = −J〈⇀σi · ⇀σj〉κ = −J

(
σi1σj1 + κσi2σj2

)
.

We get non-Gibbsianness at low enough temperatures for any κ ∈ (0, 1).

- 2d planar long-range rotator models

There, we use the spontaneous magnetization at low temperature derived by Kunz and
Pfister [95] by comparison with a hierarchical model, à la Dyson, coupled to the global
specification. For both ingredients, we emphasized again that the correlation inequalities
for vector spins derived by Ginibre, and not valid at higher dimensions, are essential.

Bad configuration : alternating ω′alt with angle θ = (−1)i1+i2 π
2 for any site i = (i1, i2)

Ferromagnetic couplings : (α > d = 2) : J ≥ 0, i, j ∈ Zd,

J iso,α(i, j) := J · |i− j|−α · 〈⇀σi · ⇀σj〉.

We get non-Gibbsianness at low enough temperatures for all α ∈ (2, 4).
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2 General Framework and Global Specifications

2.1 General Framework

We will focus on Ising and vector spins on the d-dimensional lattice Zd, mostly concentrating
on the planar case (d = 2). As usual in Mathematical Statistical Mechanics, we investigate
infinite-volume behaviors, and in particular consider the Dobrushin-Lanford-Ruelle (DLR)
framework [31, 99], where at infinite volume, Gibbs measures are defined by means of the
specification of the regular versions of their conditional probabilities w.r.t. the outside of
finite sets (on which boundary conditions are prescribed).

Lattice Structure:

We denote by S the set consisting of all finite subsets of the lattice Zd, and we will consider
often sequences of cubes ΛL = ([−L,+L] ∩ Z)d, L ∈ N, to perform Thermodynamic Limits1.
Lattice sites will be denoted by Latin letters i, j, k, with components ij = (i1, . . . , id) (mostly
i = (i1, i2)). We denote by | · | the L2-norm on Zd . When |i− j| = 1, the two sites i, j ∈ Zd
are said to be nearest neighbors (briefly written n.n.).

Measurable Structure :

We shall consider two different single-site state spaces (E, E , ρ0), modelling two different
sort of microscopic values (“spins”):

Ising spins : The state space is the simple alphabet E = {−1,+1}, equipped with the a
priori counting measure ρ0 = 1

2δ−1 + 1
2δ+1 and E = P({−1,+1}).

or

Rotator vector –XY – spins : The state space is the unit circle E = S1, equipped with
the Borel σ-algebra E and with the normalized Haar measure as a priori measure ρ0.

In this vectorial case, we denote by (⇀e1,⇀e2) the canonical basis of R2 and to pursue the
analogy with the Ising case, we sometimes identify the sphere E with ]− π,+π]. In this case,
for i ∈ Z2, we shall identify a spin vector ⇀σi in E by its angle θi with the horizontal element
of the basis,

θi = θ(⇀σi) = (⇀σi,⇀e1) ∈]− π,+π]

where (·, ·) will denote the angle between vectors (not to be confused with scalar products
〈·, ·〉 used below in the interactions).

To each site i of the lattice is attached a spin with values σi ∈ E (resp. ⇀σi ∈ E), giving rise
to infinite-volume configurations of the form σ = (σi)i∈Zd (resp. ⇀σ = (⇀σi)i∈Zd). Microscopic
states will sit in the (infinite-volume) configuration space which will be the infinite-product
probability space equipped with the product measurable structure,

(Ω,F , ρ) = (EZd , E⊗Zd , ρ⊗Zd).

These configurations are denoted generically by Greek letters σ, ω, etc., or ⇀σ, ⇀ω, etc. in
the rotator cases. They are infinite families of random variables σ = (σi)i ∈ {−1,+1}Zd

in the Ising case or random vectors ⇀σ = (⇀σi)i ∈ (S1)Z
d

in the rotator case. We also denote
(ΩΛ,FΛ, ρΛ) = (EΛ, E⊗Λ, ρ⊗Λ) to be the restriction/projection of Ω on ΩΛ, for Λ ∈ S. We also
generically consider possibly infinite subsets ∆ ⊂ Zd, for which all the preceding notations
defined for finite Λ extend naturally (Ω∆,F∆, ρS , σ∆, etc.).

1In this limiting procedure, one has to respect convergence to zero of the ratio surface/volume. Sometimes
less stringent convergence along a net directed by inclusion can be enough, see [41].
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On these single-spin state spaces E, we shall consider pair potentials with different types
of couplings J(i, j) (isotropic vs. anisotropic, or n.n. vs. long-range –polynomially decaying),
but always in a ferromagnetic context (with some positive measurable functions J on Zd×Zd,
with J(i, j) ≥ 0 for any pair {i, j}, see next sections).

We also denote by M+
1 the set of probability measures on (Ω,F). We moreover consider

some partial order ≤ on Ω : σ ≤ ω if and only if σi ≤ ωi for all i ∈ Z2. This order extends
to functions: f is called increasing when σ ≤ ω implies f(σ) ≤ f(ω). It induces then a
stochastic order on measures and we write µ ≤ ν if and only if it is valid for expectations,
with µ[f ] ≤ ν[f ] for all f increasing2. The Gibbsian formalism we consider here, built within
the DLR framework, has been fully rigorously described by Georgii [69]; macroscopic states are
modelled by Gibbs measures inspired by a mix of measurable and topological considerations
(see also [53]), with the important property of continuity for regular versions of finite-volume
conditional probabilities as a function of the boundary condition, in the sense more precisely
given below.

Topological Structure :

Our configuration spaces will be endowed with the product topology of the canonical
topology of the underlying single-spin state space E, i.e. the discrete topology in the Ising
cases, and the Borel topology on the circle S1 in the the rotator cases.

In this product topology of the discrete topology on E = {−1,+1} (resp. the Borel topol-
ogy on E =]−π,+π]), configurations are close when they coincide (resp. when they are close)
on large finite regions Λ and arbitrary outside. Of course, the larger the finite common region,
the closer they are. We denote by C(Ω) the set of continuous functions on Ω equipped with
these topologies.

In the Ising context with finite state-space equipped with the discrete topology, conti-
nuity is equivalent to uniform continuity and to so-called quasilocality, defined as

f ∈ C(Ω) ⇐⇒ lim
Λ↑S

sup
σ,ω:σΛ=ωΛ

| f(ω)− f(σ) |= 0. (2.1)

Quasilocality itself is closely related to the concept of Gibbs measures, as we shall see.

For a given configuration ω ∈ Ω, a neighbourhood basis is provided by the family(
NΛ(ω)

)
Λ∈S with, for any Λ ∈ S,

NΛ(ω) =
{
σ ∈ Ω : σΛ = ωΛ, σΛc arbitrary

}
.

We also consider in this case particular open subsets N+
Λ,∆(ω),N−Λ,∆(ω) of the neighborhoods

NΛ(ω) on which configurations also coincide with the maximal +-configuration (resp. −-
configuration) on an annulus ∆ \ Λ for ∆ ⊃ Λ, defined for all Λ ∈ S, ω ∈ Ω as

N+
Λ,∆(ω) =

{
σ ∈ NΛ(ω) : σ∆\Λ = +∆\Λ, σ∆c arbitrary

}
,

N−Λ,∆(ω) =
{
σ ∈ NΛ(ω) : σ∆\Λ = −∆\Λ, σ∆c arbitrary

}
.

In the rotator context for the Borel topology on the sphere S1 or on the interval
] − π,+π], continuity is stronger than quasilocality, for which the definition (2.1) still holds.

2We only need to consider real-valued functions here –even in the rotator case where we consider vertical
magnetisations– but the extension to vector-valued functions is straightforward componentwise.
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In both contexts, the set of measurable quasilocal functions, denoted Fqloc, is also the set
of the possible uniform limits of local functions, the one that are FΛ-measurable for some
Λ ∈ S. Note that in the rotator context there exist local and quasilocal functions which are
not continuous, such as characteristic functions of the spin at the origin being inside some
interval, see [69, 41].

For a given configuration ⇀ω ∈ Ω, to get “open subsets” with positive measure, one cannot
ask anymore that angles are fixed, so they are only constrained in small intervals around
the configuration. A basis of neighborhoods is then provided for a given parameter sequence
εk > 0 by the family

(
NΛ,εk(⇀ω)

)
Λ∈S with, for any Λ ∈ S,

NΛ,εk(⇀ω) =
{
⇀σ ∈ Ω : (⇀σi, ⇀ωi) ≤ εk,∀i ∈ Λ;⇀σΛc arbitrary

}
.

We also consider particular open subsets of neighborhoods NΛ,ε(⇀ω) for which, on the
contrary to the Ising case, the angles are not fixed on the annulus but rather confined in small
intervals of radius ε > 0 around the maximal and minimal values, that is configurations are
also close to specific configurations of canonical angles ±π/2 on an annulus ∆ \Λ for ∆ ⊃ Λ,
defined for all Λ ∈ S, ω ∈ Ω as

N+π
2

Λ,∆,ε(
⇀ω) :=

{
⇀σ ∈ NΛ,ε(⇀ω) : (⇀σi,⇀e1) ∈

(
+
π

2
− ε,+π

2
+ ε
)

for i ∈ ∆ \ Λ, ⇀σ∆c arbitrary
}
,

N−
π
2

Λ,∆,ε(
⇀ω) :=

{
⇀σ ∈ NΛ,ε(⇀ω) : (⇀σi,⇀e1) ∈

(
− π

2
− ε,−π

2
+ ε
)

for i ∈ ∆ \ Λ, ⇀σ∆c arbitrary
}
.

We shall sometimes shortly denote N+
Λ,∆,ε(

⇀ω) := N+π
2

Λ,∆,ε(
⇀ω) or N−Λ,∆,ε(⇀ω) := N−

π
2

Λ,∆,ε(
⇀ω).

Macroscopic States :

In Mathematical Statistical Mechanics, macroscopic states are thus represented by mea-
sures inM+

1 . To describe such measures on the infinite-product probability space Ω, in view of
a mathematical description of phase transitions and phase coexistence, one aims at describing
it by prescribing versions of conditional probabilities w.r.t. boundary conditions outside finite
sets. In this so-called DLR approach, independently introduced in the late 60’s by Dobrushin
[31] in the East, and Lanford/Ruelle [99] in the West, candidates to represent such a system
of conditional probabilities are families of probability kernels, formally introduced by Föllmer
[56] and Preston [118] in the mid 70’s under the terminology (local) specifications :

Definition 1 ((Local) Specification) A specification γ =
(
γΛ

)
Λ∈S on (Ω,F) is a family

of probability kernels γΛ : Ω×F −→ [0, 1]; (ω,A) 7−→ = γΛ(A | ω) s.t. for all Λ ∈ S:

1. For all ω ∈ Ω, γΛ(·|ω) is a probability measure on (Ω,F).

2. For all A ∈ F , γΛ(A|·) is FΛc-measurable.

3. (Properness) For all ω ∈ Ω, γΛ(B|ω) = 1B(ω) when B ∈ FΛc.

4. (Consistency) For all Λ ⊂ Λ′ ∈ S, γΛ′γΛ = γΛ′, where

∀A ∈ F , ∀ω ∈ Ω, (γΛ′γΛ)(A|ω) =

∫
Ω
γΛ(A|ω′)γΛ′(dω

′|ω). (2.2)
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These kernels also acts on functions and on measures: for all f ∈ C(Ω) or µ ∈M+
1 ,

γΛf(ω) :=

∫
Ω
f(σ)γΛ(dσ|ω) = γΛ[f |ω] and µγΛ[f ] :=

∫
Ω

(γΛf)(ω)dµ(ω) =

∫
Ω
γΛ[f |ω]µ(dω).

Following Fernández-Pfister [54], a local specification is said to be monotonicity-preserving
or attractive3 if, for all Λ ∈ S and f increasing, the function ω 7→ γΛf(ω) is an increasing
function of the boundary condition ω. It is straightforward that Gibbsian specifications for
the ferromagnetic pair-potentials (i.e. with coupling functions J(i, j) ≥ 0) considered here are
monotonicity-preserving.

In order to extend local specifications to global ones in these contexts, and to be able
to profit from monotone convergence theorems, extending [54] beyond the Ising-spin case
with finite alphabet, we shall need to identify an underlying partial order on configurations,
especially in the rotator case (where it is not so obvious, and restricted to spin dimension
two), see Theorem 2.

In the Ising case one can take the canonical order ≤ on E and says that ω ≤ ω′ if and
only if ωi ≤ ω′i, for all i ∈ Z2. The two “extremal” (i.e. minimal and maximal) configurations,
denoted − and + and defined as −i=-1 for all i ∈ Z2 and +i = +1 for all i ∈ Z2, will give rise
to infinite-volume limits µ− and µ+ that are extremal in two ways : first, they are extremal
Gibbs measures; and second, they are extremal with respect to this partial order as, for any
other Gibbs measure (describe below) µ, it holds that µ− ≤ µ ≤ µ+, i.e. for all f increasing,

µ−[f ] ≤ µ[f ] ≤ µ+[f ].

For a proof that ferromagnetic Gibbs specifications are indeed monotonicity-preserving in
this context see e.g. the original works of Ginibre [72] or Griffiths [76].

In the rotator case, with state-space S1, we need thus to cook up a partial order for
which our particular homogeneous configurations −π

2 and +π
2 are the extremal ones with

respect to this order. To do so, we choose the partial order ≤sin as follows :

Let θ = θi ∈]− π,+π] be the canonical angle related to the configuration ωi at site i, and
let θ′i be the corresponding value for ω′i. Then we say that

ω ≤sin ω
′ if and only if sin θi ≤ sin θ′i, for all i ∈ Z2

and similarly for measures,

µ ≤sin µ
′ if and only if for any f increasing, µ[f ] ≤ µ′[f ].

Note that we keep the expression ≤sin for the stochastic order (on measures), while it does
not appear in the order on expectations. For the latter, it corresponds indeed to the standard
order between real numbers, but we stress it has to be tested on functions which are increasing
w.r.t. the specific ≤sin order.

For such a partial order ≤sin, the XY -specification with ferromagnetic couplings J =
(J(i, j))i,j∈Z2 , with J(i, j) ≥ 0 for any pair (i, j) ∈ Z2, is monotonicity-preserving. This
allows us to prove the existence as weak limits of our particular infinite-volume measures µ−

and µ+ obtained by taking respectively −π
2 and +π

2 -boundary conditions. The limits are
known to exist and to be extremal in the original (convex) sense since [77], see also [25].

3See also the books by Preston [117, 118].
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Moreover, these weak limits coincide with the minimal and maximal measures in the sense
of the stochastic order : Any other Gibbs measure µ satisfies, for all f increasing in the sense
of ≤sin,

µ−[f ] ≤ µ[f ] ≤ µ+[f ]

so that the inequalities µ− ≤sin µ ≤sin µ
+ hold. Note again that this construction is only

valid for two-component (rotator, or XY ) vector spins. For discussions on the extension of
correlation inequalities to higher-dimensional-vector cases, see [14, 16, 17, 18, 19, 37, 38, 71,
83, 95, 96, 97, 114, 116].

For a given measure one can show that it is always possible to build a consistent specifi-
cation with a given probability measure [73, 119, 129]. Nevertheless, different measures can
then have their conditional probabilities described by the same specification but on different
full measure sets, leaving the door open to a mathematical description of phase transitions,
as we shall see below for our ferromagnetic Ising models and some of our rotator models on
Z2.

Definition 2 (DLR Measures) A probability measure µ on (Ω,F) is said to be consistent
with a specification γ (or specified by γ) when for all A ∈ F and Λ ∈ S

µ[A|FΛc ](ω) = γΛ(A|ω), µ−a.e. ω ∈ Ω. (2.3)

Equivalently, µ is consistent with γ if∫
(γΛf)dµ =

∫
fdµ for all Λ ∈ S and f ∈ Floc,

or if and only if µγΛ = µ, ∀Λ ∈ S.

We denote by G(γ) the set of measures consistent with γ. Describing this set is precisely
the central task of Equilibrium Mathematical Statistical Mechanics. Indeed, in contrast to
Kolmogorov’s Extension Theorem based on marginals, the existence of a measure for a given
specification is not guaranteed nor is the uniqueness: in particular, one can also get more
than one element, and in such a case we say that there is a Phase Transition. Central in
statistical mechanics, this notion is also essential for many proofs to get non-Gibbsianness,
when phase transitions occur in some hidden, constrained system, as we shall see in all the
remaining sections.

Due to this non-uniqueness phenomenon, the structure of G(γ) can be very rich, see e.g.
Chapter 7 of [69]. In particular, G(γ) is a convex set whose extremal elements are the Gibbs
measures that are trivial w.r.t. the asymptotic σ-algebra F∞ = ∩Λ∈SFΛc , and interpreted as
the effective physical phases of the system. Note that we sometimes employ the terminology
states for measures. Describing the set of such extremal states is a vibrant field of research,
as the set of all Gibbs measures for a given interaction can be very huge.

As we shall briefly describe below, the full convex structure for the 2d-n.n. Ising model
can be obtained via the celebrated Aizenman-Higuchi theorem [1, 82]: G(γ) coincides with the
interval [µ−, µ+], thus with “only” two extremal elements, that are translation-invariant, and
no non-translation-invariant states (and thus there does not exist non-translation-invariant
Gibbs measures).

Next to the 2d-n.n. Ising model, also long-range polynomial Ising models in dimension
one (sometimes called “Dyson” or “Dyson-Ising” models [46, 11]) share this property, but
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this is not the case for higher-dimensional Ising or rotator models. Indeed, there do exist
extremal non-translation invariant states for the three- and higher- dimensional n.n Ising
models (including – in d = 3 probably exclusively – the so-called Dobrushin/interface states),
and uncountably many extremal translation-invariant magnetized states for long-range or
high-dimensional rotators at low temperature4. Short-range models in high-temperature or
high-field/low-density regions, or in d = 1, have generally uniqueness, so for those models
also the sets of all Gibbs measures are known. One advantage of working with rotators (XY -
models) over higher-dimensional vector models such as the classical Heisenberg model, is the
existence of FKG ordering -or attractivity-, which does not hold in general vector models, see
[95, 128]. See also [59] for a more complete picture.

The concept of quasilocality naturally extends from the definition for functions, cf. (2.1),
to specifications and measures, and provides a proper framework to insure existence of DLR-
consistent measures, i.e. that G(γ) 6= ∅. A specification is said to be quasilocal when the set
of quasilocal functions is conserved by its kernels. More formally, for all Λ ∈ S, the image
of any local function f via the kernel of γ is a quasilocal function5 (w.r.t. to the boundary
condition):

f ∈ Floc =⇒ γΛf ∈ Fqloc. (2.4)

A measure is said to be quasilocal iff it is specified by a quasilocal specification.

Gibbs measures are measures consistent with a Gibbs specification defined in terms of a
uniformly absolutely convergent potential Φ, for which one can give sense to the Hamiltonian
at volume Λ ∈ S with boundary condition ω defined, for all σ ∈ Ω, as

HΦ
Λ (σ|ω) :=

∑
A∩Λ6=∅

ΦA(σΛωΛc)(<∞) (2.5)

where σΛωΛc is the configuration agreeing with σ on Λ and with ω on Λc. In this paper, we
restrict ourselves to pair-potentials ΦJ with ferromagnetic coupling functions J : S×S −→ R+

and formal Hamiltonian

HJ
Λ(σ) = −

∑
{i,j}

J(i, j) 〈σi · σj〉

where “〈 · 〉” is either ordinary product of real numbers (for Ising spins) or an inner product
(for vector spins), as we shall see. The Gibbs specification at inverse temperature β > 0 is
then given by γJ = γβΦ, defined at finite volume Λ by

γJΛ(dσ | ω) =
1

ZβΦ
Λ (ω)

e−βH
Φ
Λ (σ|ω)(ρΛ ⊗ δωΛc

)(dσ) (2.6)

where the normalization ZβΦ
Λ (ω) –the partition function– is a normalizing constant (exponen-

tially) related to a free energy. Such a specification is non-null (i.e. when for all Λ ∈ S and
all A ∈ FΛ, ρ(A) > 0 implies that γΛ(A|ω) > 0 for any ω ∈ Ω) and has the property that it is
quasilocal (see below). In fact, in the mid-seventies, Kozlov [92] and Sullivan [130] established
that, for a measure µ, being Gibbs is in fact also equivalent to being non-null and
quasilocal, so that one has the

4Note it is not rigorously known whether there are states different from the interface ones. For the usual
n.n. rotator model those won’t exist, but high-dimensional vortices might be thermally stable, [68].

5 Thus γΛf ∈ C(Ω) in the Ising case (but not necessarily in the vector case).
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Definition 3 (Gibbs Measure) µ ∈ M+
1 is a Gibbs measure iff µ ∈ G(γ), where γ is a

non-null and quasilocal specification.

Non-nullness allows a proper exponential factor to alter the product structure of the measure –
to get correlated random fields –, while quasilocality allows us to interpret Gibbs measures as
natural extensions of the class of Markov fields. Sullivan used the term of Almost Markovian
instead of quasilocal in [130] and provided an uniformly convergent potential from such a non-
null specification, while Kozlov [92] provided an uniformly absolutely convergent telescoping
potential that is not in general translation-invariant, unless the specification is more regular
than continuous (see [53] for a complete description, or the recent re-visit of these conditions
by Barbieri et al. [5]).

In the next sections, we shall explicitly describe our Gibbs measures, focusing on pair po-
tentials, in either an Ising-spin set-up (with values in the elementary alphabet E = {−1,+1}),
or in O(N)- symmetric set-ups (where microscopic variables take values in the sphere N -
dimensional unit sphere, E = SN−1), essentially in dimension two and for N = 2 (rotator
models). We shall submit these Gibbs measures to the elementary renormalisation trans-
formation, the decimation of spacing 2, and show that the transformed measures are not
necessarily quasilocal. For these general descriptions, generic configurations will be written
by Greek letters, whatever they concern scalar (Ising) or vector (rotator) spins. We shall
indicate afterwards when they are scalar or vector, but not always.

Essential discontinuity – Non-Gibbsianness:

Assume that a given specification µ ∈ G(γ) is quasilocal, then for any f local and Λ ∈ S,
the conditional expectations of f w.r.t. the outside of Λ are µ-a.s. given by γΛf , by the DLR
Equations (2.3), and it is itself a quasilocal function of the boundary condition. Thus, one
should get for any ω ∈ Ω,

lim
∆↑Z2

sup
ω1,ω2∈Ω

∣∣∣µ[f |FΛc
]
(ω∆ω

1
∆c)− µ

[
f |FΛc

]
(ω∆ω

2
∆c)
∣∣∣ = 0 (2.7)

which yields an (almost-sure) asymptotically weak dependence on the conditioning, which can
be seen as an extended Markov property. In particular, for Gibbs measures the conditional
probabilities always have continuous versions, or, equivalently, there is no point of essential
discontinuity, in the following sense:

Definition 4 (Essential discontinuity) A configuration ω ∈ Ω is said to be a point of
essential discontinuity for a conditional probability of µ ∈M+

1 if there exists Λ0 ∈ S, f local,
δ > 0, such that for all Λ with Λ0 ⊂ Λ there exist N 1

Λ(ω) and N 2
Λ(ω), two open (or at least

positive-measure) neighborhoods of ω, such that

∀ω1 ∈ N 1
Λ(ω), ∀ω2 ∈ N 2

Λ(ω),
∣∣∣µ[f |FΛc

]
(ω1)− µ

[
f |FΛc

]
(ω2)

∣∣∣ > δ

or equivalently

lim
∆↑Z

sup
ω1,ω2∈Ω

∣∣∣µ[f |FΛc
]
(ω∆ω

1
∆c)− µ

[
f |FΛc

]
(ω∆ω

2
∆c)
∣∣∣ > δ. (2.8)

In the generalized Gibbsian framework, one also says that such a configuration is a bad con-
figuration for the considered measure, see e.g. [101]. In virtue of the Kozlov-Sullivan charac-
terization of Gibbs measures, the existence of such bad configurations is characteristic of a
non-Gibbsianness of the associated measures.
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In this paper, we pursue the detection side of the Dobrushin Program of restoration of
Gibbsianness, and extend previous non-Gibbs results obtained in the context of Decimations,
the simplest RG transformations so far. We extend the Israel-van Enter-Fernandez-Sokal
original approach (which was worked out in most detail for the 2d-n.n. Ising model) in two di-
rections : to higher-dimensional long-range Ising models, and to, possibly anisotropic, rotator
models.

Decimated Measures :

Denote by µ+ a particular Gibbs measure, for the Ising or rotator models described below.
We shall consider some plus phase, obtained as the weak limit (3.24) with plus boundary
conditions, but there is no need to be more precise for the moment (see next Section). We
shall thus submit these Gibbs measures to the decimation transformation :

T : (Ω,F) −→ (Ω′,F ′) = (Ω,F); ω 7−→ ω′ = (ω′i)i∈Z2 , with ω′i = ω2i (2.9)

Denote by ν+ := Tµ+ the decimated measure, formally defined as an image measure via

∀A′ ∈ F ′, ν+(A′) = µ+(T−1A′) = µ+(A) where A = T−1A′ =
{
ω : ω′ = T (ω) ∈ A′

}
.

We distinguish between original and image sets using primed notation, although by rescaling
the configuration spaces Ω (original) and Ω′ (image) are identical.

For Ising spins, the original measure µ+ we consider will be the standard plus phase
obtained by taking the homogeneous all plus b.c. +, defined by +i = +1 for all i ∈ Z2.

To investigate potential points of essential discontinuity for the image measure, we will
choose, inspired by the magnetization being the order parameter, the local function f(σ′) =
σ′(0,0), and will need to be able to evaluate

ν+[σ′(0,0)|F{(0,0)}c ](ω
′) = µ+[σ(0,0)|FSc ](ω), ν+ − a.s., (2.10)

where Sc = (2Z2) ∩ {(0, 0)}c = (2Z2)c ∪ {(0, 0)} is not finite: the conditioning is not on the
complement of a finite set; so that DLR Equations (2.3) do not hold directly for such set
Λ = S.

In this Ising-spin ferromagnetic context, one can extend the formalism and use the Global
Specifications derived for them in [54], to get a family Γ+ of conditional probabilities such
that µ+ ∈ G(Γ+), built in the following Theorem 1, where S = (2Z2)c ∪ {(0, 0)} consisting of
the odd integers plus the origin.

Theorem 1 [54, 46, 102] Consider any of our ferromagnetic Ising models on Z2 at inverse
temperature β > 0 with specification γJ with couplings J(i, j) ≥ 0 defined for any pair {i, j} ∈
Z2. In particular consider its extremal Gibbs measures µ+ and µ− obtained by the weak limits
(3.26).

Define Γ+ = (Γ+
S )S⊂Z2 to be the family of probability kernels on (Ω,F) as follows:

• For S = Λ finite, for all ω ∈ Ω, Γ+
Λ(dσ|ω) := γJΛ(dσ|ω).

• For S infinite, for all ω ∈ Ω, Γ+
S (dσ|ω) := µ+,ω

S ⊗δωSc (dσ) where the constrained measure

µ+,ω
S is the weak limit obtained by freezing in +SωSc on Λc:

µ+,ω
S (dσS) := lim

∆↑S
γJ∆(dσ | +SωSc).
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Then Γ+ is a global specification such that µ+ ∈ G(Γ+). It is moreover monotonicity-
preserving and right-continuous, but not quasilocal when β > β̃c > 0. Similarly, one defines a
monotonicity-preserving and left-continuous global specification Γ− such that µ− ∈ G(Γ−).

Now, for any special configuration6 ω′alt, (2.10) reduces for ν+-a.e. ω′ ∈ NΛ′(ω
′
alt) to

ν+[σ′(0,0)|F{(0,0)}c ](ω
′) = Γ+

S [σ(0,0)|ω] µ+−a.e.(ω) (2.11)

with S = (2Z2)c ∪ {(0, 0)} and ω ∈ T−1{ω′} is defined to coincide with the alternating
configuration on the even lattice 2Z2. The expression of the latter is provided in terms of the
constrained measure µ+,ω

(2Z2)c∪{0}, with ω ∈ T−1{ω′} so that we get for any ω′ ∈ NΛ′(ω
′
alt),

ν+[σ′(0,0)|F{(0,0)}c ](ω) = µ+,ω
(2Z2)c∪{(0,0)} ⊗ δω2Z2∩{(0,0)}c

[σ(0,0)].

By monotonicity-preservation, it is explicitly built as the weak limit obtained by plus boundary
conditions fixed after a freezing of ω on the even sites : ∀ω′ ∈ NΛ′(ω

′
alt),∀ω ∈ T−1{ω′},

µ+,ω
(2Z2)c∪{(0,0)}(·) = lim

∆∈S,∆↑(2Z2)c∪{(0,0)}
γJ∆(· | +(2Z2)c∪{(0,0)})ω2Z2∩{(0,0)}c). (2.12)

Note that it is enough to consider this limit on a sequence of cubes ∆N = ([−N,+N ] ∩ Z)2

in the original space.

In the case of rotator spins, the original measure µ+ we consider will be the Gibbs
measure obtained by taking the homogeneous b.c. ⇀σ+ with vertical angle θ = θi = +π

2 for
any i ∈ Z2 where the latter denotes the angle between the vectorial configuration at site i with
the horizontal axis, (⇀σ+

i ,
⇀e1) = +π

2 . The configuration itself is sometimes written shortly θ or
+π

2 (in boldface). The limit for such homogeneous b.c. is known to exist from [116] (while
one can learn in [68] that all the extremal Gibbs measures are obtained in that manner, with
an homogeneous b.c. θ, with θ ∈]− π,+π]).

Moreover, in this context with continuous symmetry, in two dimensions, the magneti-
zation is always zero for short-range models by the famous Mermin-Wagner “ban”. The
Mermin-Wagner theorem claims that in short-range models in dimensions 1 and 2, continuous
symmetries cannot be spontaneously broken. Nevertheless, in the case of long-range slowly
decaying potentials, first investigated by Kunz and Pfister [95], non-zero magnetizations do
occur. Also, even if Mermin-Wagner applies, in some contexts, see e.g. [50], other order pa-
rameters can exist, leading to other manifestations of phase transitions. Moreover, differently
from rotational long-range order, in superficially similar but non-rotationally-invariant mod-
els, with random or periodic external fields, e.g. longitudinal or vertical, long-range order due
“spin-flop” transitions etc. can occur, so that Mermin-Wagner in fact doesn’t provide as strict
a ban on the occurrence of phase transitions as one might initially imagine. In the course of
our proofs, various choices of local functions f can be made so that we investigate essential
discontinuity by the evaluation of the conditional probabilities

ν+[f(⇀σ′)|F{(0,0)}c ](
⇀ω′) = µ+[f(⇀σ′)|FSc ](⇀ω), ν+ − a.s. (2.13)

where Sc = (2Z2) ∩ {(0, 0)}c = (2Z2)c ∪ {(0, 0)} is not finite: the conditioning is not on the
complement of a finite set; so that DLR Equations (2.3) do not hold.

6It will be alternating in our non-Gibbs results, but in principle here it can be any configuration ω′ ∈ Ω′.
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2.2 Global Specification for Rotator Spins

Although Global Specifications, useful in such a situations, have been proven to exist only
in a more limited set-up in the study of ferromagnetic Ising cases by Fernández et al. in
[54], we describe now how they can be extended thanks to the attractivity7 of XY -models,
O(N)-models with N = 2, such that the following analogue of Theorem 1 is valid:

Theorem 2 [Global specification for 2d-rotator spins] Consider any of our ferromagnetic
rotator models on Z2 at inverse temperature β > 0 with specification γJ with (ferromagnetic)
couplings J(i, j) defined for any pair {i, j} ∈ Z2, and in particular its extremal Gibbs measures
µ+ and µ−, respectively obtained by weak limits from the opposed angle-b.c. θ+ ≡ +π

2 or
θ− ≡ −π

2 .

Define Γ+ = (Γ+
S )S⊂Z2 to be the family of probability kernels on (Ω,F) as follows:

• For S = Λ finite, for all ⇀ω ∈ Ω, Γ+
Λ(d⇀σ|⇀ω) := γJΛ(d⇀σ|⇀ω).

• For S infinite, for all ⇀ω ∈ Ω,

Γ+
S (d⇀σ|⇀ω) := µ+,⇀ω

S ⊗ δ⇀ωSc (d⇀σ) (2.14)

where the constrained measure µ+,⇀ω
S is the weak limit obtained with freezing in ⇀+S

⇀ωSc

on Λc:

µ+,⇀ω
S (d⇀σS) := lim

∆↑S
γJ∆(d⇀σ | ⇀+S

⇀ωSc).

Then Γ+ is a global specification such that µ+ ∈ G(Γ+). Similarly, one defines a monotonicity-
preserving and left-continuous global specification Γ− such that µ− ∈ G(Γ−).

Proof : Let us describe how the extension of the construction of a global specification in
the attractive case [54] – initially restricted to Ising state spaces E = {−1,+1} – extends to
our continuous spin state-space E = S1 thanks to our choice of partial order ≤sin. Basically,
we need to check that :

• The fact the initial order on configurations is only partial does not affect the use of the
monotonicity-preserving property.

• The fact that the state space becomes continuous does not affect measurability properties
of the kernels defining the global specification, nor the use of monotone-convergence
theorem.

As in the Ising case, we define the kernels Γ+
S in two ways, depending whether S is finite

or infinite. We shall afterwards extend Lemma 3.1 and Lemma 3.2 from [54] to our rotator
landscape.

First, let the local specification γJ and the global specification Γ+ coincide on finite sets:

Γ+
Λ ≡ γJΛ, ∀Λ ∈ S.

7For extension or non-extension, depending on the dimension to rotator or classical Heisenberg models of
classical correlation inequalities (GHS or Lebowitz inequalities), see Ginibre [71] or Lebowitz [104]. See also
Dunlop et al.[37, 38], Monroe [113], Ellis et al. [39], Kunz et al., [96, 97], Romerio et al. [121, 122].
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Second, for any infinite set S ⊂ Z2 and any finite set Λ, by consistency we need

Γ+
S = Γ+

SΓ+
Λ = Γ+

S γ
J
Λ. (2.15)

Hence, for any function f ∈ Floc and any finite set Λ, it holds

Γ+
S (f | ⇀ω) =

∫
Ω
γJΛ(f | ⇀σ)Γ+

S (d⇀σ | ⇀ω) =
properness

∫
Ω
γJΛ(f | ⇀σS⇀ωSc)Γ+

S (d⇀σ | ⇀ω),

and this has to be valid for any choice of the boundary condition ⇀ω. Thus the infinite-volume
probability measure Γ+

S (· | ⇀ω) is consistent with the so-called constrained specification γS,
⇀ω

defined for any ⇀η by

γS,
⇀ω

Λ (· | ⇀η) := γJΛ(· | ⇀ηS⇀ωSc)
for a frozen configuration ⇀ω.

To recover a global specification consistent with µ+, we shall perform a weak limit with

plus b.c. directly on this constrained specification γS,
⇀ω = (γS,

⇀ω
Λ , Λ ∈ S).

Here γS,
⇀ω

Λ (· | ⇀η) defines a probability measure on (ΩS ,FS) and γS,
⇀ω

Λ (F | ·) is FS\Λ-
measurable for any choice of F ∈ FS , so that we have only to check properness and consistency
of the family of kernels Γ+ as defined by (2.14). Then for any configuration ⇀ω, the choice of a

candidate for an element of G(γS,
⇀ω) (in which the elements of the specification have to be con-

sistent according to (2.15)) is made as follows: for a finite set Λ ⊂ S, the configuration at Λc

is fixed at the θ+ values (i.e. +π/2) if sites do not belong to Sc; otherwise, the configuration
is frozen onto ⇀ω.

Such a candidate measure in G(γS,
⇀ω), called the constrained measure µ+,⇀ω

S , is defined via
the weak limit8

µ+,⇀ω
S (·) := lim

∆↑S
γJ∆(· | ⇀+S

⇀ωSc), (2.16)

and gives rise, for any infinite set S ⊂ Z2, to the kernels

Γ+
S (d⇀σ | ⇀ω) := µ+,⇀ω

S (d⇀σS)⊗ δ⇀ωSc (d⇀σSc)

which may be also written as

Γ+
S (d⇀σ | ⇀ω) = lim

∆↑S
γJ∆(d⇀σ | ⇀+S

⇀ωSc),

to give a probability measure on (Ω,F). Let us now show, following almost verbatim Lemma
3.2 in [54], that DLR consistency holds for the global specification candidate Γ+, namely that
for two infinite subsets D1 ⊂ D2, we have:

Γ+
D2

Γ+
D1

= Γ+
D2
. (2.17)

For a set Λ1 ⊂ D1, and f1 a Λ1-local function, (2.17) may be stated as∫
Γ+
D2

(d⇀η | ⇀ω)Γ+
D1

(f1 | ⇀η) = Γ+
D2

(f1 | ⇀ω).

8We stress that the weak limit in (2.16) for obtaining the constrained measure µ+,⇀ω
S with θ+-boundary

conditions on S is performed after the freezing into ⇀ω on the set Sc.
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Recalling that Γ+
S (d⇀σ | ⇀ω) := µ+,⇀ω

S (d⇀σS)⊗ δ⇀ωSc (d⇀σ), we just have to prove∫
µ+,⇀ω
D2

(d⇀η)Γ+
D1

(f1 | ⇀ηD2
⇀ωDc2) =

∫
µ+,⇀ω
D2

(d⇀ηD2)f1(⇀ηS2).

In order to have the claim we only need to check that for two non-negative, increasing (in the
sense of the partial order ≤sin) functions f1, f2 which are respectively Λ1-local and Λ2-local,
with Λ1 ⊂ D1, Λ2 ⊂ D2 \D1,

Eµ+(f1f2) = Eµ+(Γ+
D1

(f1 | ·)f2).

So that in order to get it we only have to check that the monotonicity argument passes through
as in [54]. In order to do so, let us recall now our important choice of partial order :

⇀ω ≤sin
⇀ω′ ⇐⇒ sin θi ≤ sin θ′i for all i ∈ Z2.

A key observation to properly use the monotonicity of the initial configuration for this (2d)
rotator model is that any configuration ⇀σ can be dominated as

⇀σ ≤sin
⇀ηΛ

⇀+Λc .

Then we have, for any Λ ⊂ D1, by the defining properties of probability kernels,

Γ+
D1

(f1 | ⇀η) ≤
Kernel monotony

Γ+
D1

(
f1(⇀σΛ

⇀+Λc) | ⇀η
)

= Γ+
D1

(
f1(⇀σD1∩Λ

⇀+D1∩Λc) | ⇀ηDc1
)

= γJΛ1

(
f1(⇀σΛ

⇀+D1∩Λc) | ⇀ηDc1
)

= γJΛ
(
f1(⇀σΛ) | ⇀+D1∩Λc

⇀ηDc1
)

= γJΛ
(
f1(⇀σΛ) | ⇀+D1

⇀ηDc1
)
.

(2.18)

So that
Γ+
D1

(f1 | ⇀η) ≤ γJΛ
(
f1 | ⇀+D1

⇀ηDc1
)
. (2.19)

Following (3.23) of [54], and using the right-continuity of the function ⇀η 7→ γ+
D1

(f1 | ⇀η) and
monotonicity, we have

Eµ+(Γ+
D1

(f1 | ·)f2) ≤ lim
∆↑D2

γJ∆(Γ+
D1

(f1 | ·)f2) ≤ γJΛ2
(Γ+
D1

(f1 | ·)f2 | ⇀+)

≤
∫
γJΛ2

(d⇀η | ⇀+)γJΛ
(
f1 | ⇀+D1

⇀ηDc1
)
f2(⇀η)

(2.20)

where in the second inequality we have also used the fact that Λ2 is fixed once and for all, and
in the last inequality we have used (2.19). Choosing appropriately Λ2 such that Λ2 ∩D1 = Λ,
we just recognize that the last term is∫

γJΛ2
(d⇀η | ⇀+)γJΛ

(
f1 | ⇀+D1

⇀ηDc1
)
f2(⇀η) =

∫
γJΛ2

(d⇀η | ⇀+)f1(⇀η)f2(⇀η), (2.21)

so that we finally have the inequality

Eµ+(Γ+
D1

(f1 | ·)f2) ≤ Eµ+(f1f2).
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We wish now to show the converse inequality. Now we can still use monotony, but for a subset
M ⊂ Λ2 ∩D1,

Eµ+ (f1f2) ≤ lim
Λ2

∫
γJΛ2

(d⇀η | ⇀+)f1(⇀η)f2(⇀η) = lim
Λ2

∫
γJΛ2

(d⇀η | ⇀+)γJM (f1|⇀η)f2(⇀η)

≤ lim
Λ2

∫
γJΛ2

(d⇀η | ⇀+)γJM (f1|⇀+D1
⇀ηDc1)f2(⇀η) =

∫
µ+(d⇀η)γJM (f1|⇀+D1

⇀ηDc1)f2(⇀η).

Then by Beppo Levi’s theorem we have that

Eµ+ (f1f2) ≤ lim
M↑D1

∫
µ+(d⇀η)f2(⇀η)γM (f1 | ⇀+D1

⇀ηDc1) = Eµ+

(
f2Γ+

D1
(f1 | ·)

)
and hence consistency on infinite sets, Γ+

D1
= Γ+

D1
Γ+
D2

. �

Now, for any special configuration ⇀ω′spe, (2.13) reduces for ν+-a.e. ⇀ω′ ∈ NΛ′,ε(⇀ω
′
spe) to

ν+[f(⇀σ′)|F{(0,0)}c ](
⇀ω′) = Γ+

S [f(⇀σ′)|⇀ω] µ+−a.e.(⇀ω) (2.22)

with S = (2Z2)c ∪ {(0, 0)} and ⇀ω ∈ T−1{⇀ω′} is defined to coincide with the chosen special
configuration on the even lattice 2Z2. The expression of the latter is provided in terms of the

constrained measure µ+,⇀ω
(2Z2)c∪{(0,0)}, with ⇀ω ∈ T−1{⇀ω′} so that we get for any ⇀ω′ ∈ NΛ′(⇀ω

′
spe),

ν+[f(⇀σ′)|F{(0,0)}c ](
⇀ω′) = µ+,⇀ω

(2Z2)c∪{(0,0)} ⊗ δ⇀ω2Z2∩{(0,0)}c
[f(⇀σ′)].

It can be explicitly built as the monotone weak limit obtained by +π
2 -b.c. fixed after a freezing

of ⇀ω on the even sites : ∀⇀ω′ ∈ NΛ′(⇀ω
′
alt),∀⇀ω ∈ T−1{⇀ω′},

µ+,⇀ω
(2Z2)c∪{(0,0)}(·) = lim

∆∈S,∆↑(2Z2)c∪{0,0)}
γJ∆(· | ⇀+(2Z2)c∪{0,0)})

⇀ω2Z2∩{0,0)}c). (2.23)

We shall use these constructions in Section 4, depending on the model, and adjust the
function f to get a non zero essential difference between different sub-neighbourhoods.

3 Ising and Rotator models: Phase Transitions

In this section we review some of the low-temperature results which are known about the
models we will consider. We will consider pair interactions with formal Hamiltonian

HΛ(σΛ) = −
∑
{i,j}

J(i, j) 〈σi · σj〉

where “〈 · 〉” is either the scalar product (for Ising spins) or an inner product (for vector
spins), as described below. In both the following scalar and vectorial cases, when there is
no ambiguity, we denote γJ the corresponding Gibbs specification at inverse temperature
β > 0. We will for convenience restrict ourselves to spatial dimension 2, although most of our
arguments will be extendible to higher-dimensions. The fact that we consider two-component
spins comes from that in this case we have correlation inequalities to our disposal, which don’t
hold for higher-component spins, so although a number of statements might still be true, the
proofs won’t generalise as immediately.
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3.1 Ising Models on Z2

The configuration space (Ω,F , ρ) given by the products

Ω = {−1,+1}Z2
, F = P({−1,+1})⊗Z2

, ρ =
(1

2
δ−1 +

1

2
δ+1

)⊗Z2

,

where δi is the Dirac measure on i ∈ E = {−1,+1}.
The interaction is Φ = (ΦA)A∈S defined by ΦA ≡ 0 if A 6= {i, j} and

Φ{i,j}(σ) = −J(i, j) σi · σj

where J : Z2 × Z2 −→ R+ is a ferromagnetic coupling function (J(i, j) ≥ 0).

In our ferromagnetic cases, Ising specifications are monotonicity-preserving (or attractive)
in the sense that for all bounded increasing functions f , and Λ ∈ S, the function γJΛf is
increasing as a consequence of the FKG property : spins have a tendency to align [58]. Using
as boundary conditions the extremal (maximal “+” and minimal “-”) elements of this order
≤ already allows to define extremal elements of G(γJ).

Proposition 1 [54] The weak limits

µ−(·) := lim
Λ↑Zd

γJΛ(·|−) and µ+(·) := lim
Λ↑Zd

γJΛ(·|+) (3.24)

are well-defined, translation-invariant and extremal elements of G(γJ). For any f bounded
increasing, any other measure µ ∈ G(γJ) satisfies

µ−[f ] ≤ µ[f ] ≤ µ+[f ]. (3.25)

Moreover, µ− and µ+ are respectively left-continuous and right-continuous.

For the standard 2d-n.n. model, the existence of a critical temperature has been established
by Peierls in 1936 [115, 75] and we state here the results we need through the following theorem
on the structure of the set G(γJ) of Gibbs measures for the corresponding Ising specification
γJ [1, 27, 69, 82].

Theorem 3 Let γβJ be the specification (2.6) with 2d-n.n. Ising potentials at temperature
β−1 > 0. Then there exists a critical inverse temperature 0 < βc < +∞ such that

• G(γJ) = {µβ} for all β < βc.

• G(γJ) = [µ−β , µ
+
β ] for all β > βc where the extremal phases µ−β 6= µ+

β can be selected via
“−” or “+” boundary conditions: for all f ∈ Fqloc,

µ−β [f ] := lim
Λ↑S

γJΛ[f | −] and µ+
β [f ] := lim

Λ↑S
γJΛ[f | +]. (3.26)

Moreover, the extremal phases have opposite magnetizations

m∗(β) := µ+
β [σ0] = −µ−β [σ0] > 0.

We focus here on the following long-range, possibly anisotropic in space, ex-
tensions of the n.n. case and consider the following Ising models I1-I2-I3 :
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Model I1. (Very) long-range, anisotropic in space, uniaxial (d = 2, α1 > 1) : J ≥ 0

Jn.n.,α1(i, j) := J · 1|i−j|=1 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0

Results on G(γJ) : As in the 2d-n.n. model, the set G(γJ) of Gibbs measures coincides
with the interval [µ−, µ+] for long-range ferromagnetic models in 1d, even in the phase
transition region α ∈ (1, 2). For higher-dimensional long-range models however, in
the isotropic case, there could exist non-translation invariant extremal Gibbs measures,
similar to the so-called Dobrushin states for 3d−n.n. Ising models. Although this is not
likely to happen in long-range isotropic models with α > 2, and it has been excluded
for decays α > 3 by the general arguments due to Dobrushin/Shlosman in 1985 [34],
it may happen that interface states exist in the anisotropic bi-axial cases allowing very
long-range interactions (axial decay between 1 and 2). Indeed, in such anisotropic cases,
due to the possibility of phase transition for one-dimensional polynomially decaying
pair potentials for very long range decays α ∈ (1, 2), an extension of the roughening
proof techniques used in the 3d − n.n. model, shows that there exist non-translation-
invariant extremal Gibbs measures (similar to Dobrushin states in higher dimensions),
see [7, 22, 26, 103]. There thus also could be non-translation Gibbs measures amongst
the mixed states.

Although the non-Gibbsianness of all decimated Gibbs measures does not always follow
from the non-Gibbsianness of the translation-invariant extremal states µ− or µ+, in our
models this will in fact be the case.

Model I2. Bi-axial, (Very) long-range, anisotropic in space

(d = 2, α1, α2 > 1) : J ≥ 0

Jα1,α2(i, j) := J · |i2 − j2|−α2 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0

Results on G(γJ) : Same remark as Model I1: When one of the decay powers along
an axis, α1 or α2, is less than 2, there could be a phase transition for the restriction of
the interaction to a single axis, and the proof mechanism of e.g. van Beijeren [7] applies,
leading to rigid interface states (extremal and non-translation-invariant). Nevertheless
our proof on non-Gibbsianness applies to all Gibbs measures, as we show that there exist
two open sets in any neighborhood of the discontinuity point, conditioned on which the
two conditional expectations differ by more than some given small constant. And open
sets have positive measure for all Gibbs measures.

Model I3. Long-range, Isotropic in space (α > d = 2) : J ≥ 0, i, j ∈ Zd,

J iso,α(i, j) := J · |i− j|−α

Results on G(γJ) : The full convex structure has not been proven to coincide with the
simplex [µ−, µ+] (although this is probaly the case, as suggested by the fact that the
absence of Dobrushin states has been proven in [26]), and no non-translation-invariant
states can exist at low T [34] for α > 3. We shall focus on the decimations of the plus
or minus measures, µ− and µ+, obtained by the standard b.c. procedure in (3.26) but,
as in model I2, our proof is nevertheless valid for any Gibbs measure, without using its
extremal decomposition.
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3.2 Rotator Models on Z2

When changing the values of the Ising spins from E = {−1,+1} to unitary vectors belonging
to the N -dimensional sphere E = SN−1, keeping the same type of pair potentials, we say that
one considers O(N)-models9, also called Heisenberg models. In this work, for vectorial cases,
we only consider the case of the one-dimensional sphere S1 (so N = 2), also called rotator
–or XY – models. Although, similarly to 2d-n.n. Ising models, a phase transition is known
to happen in 3d (see e.g. Friedli-Velenik [59], Chapter 10, and references therein), it is also
well known that for such models continuous symmetries cannot be broken in two dimensions.
One says that there is no magnetic long-range order, but10 if we impose periodic or random
external fields in the direction of one of the spin components, at low temperature a so-called
spin-flop transition is possible [30, 48]. This can be used to provide a non-Gibbsianness result
for the low-temperature decimated 2d-n.n. rotator model, even in absence of a phase transition
for this model, but we leave this to further studies.

In this paper, in order to be able to make use of correlation inequalities for vector spins,
we restrict ourselves to spin dimension two, and focus on two rotator models for which a phase
transition is possible (in our DLR-terminology) : Anisotropic rotator models (models V1) and
long-range ones (models V2).

Also called Vector spins (a particular case of Heisenberg or O(N)-models), our 2d rotator
models can be seen as the continuous counterpart of the Ising spins; the single-spin space is
the unit sphere of R2, i.e. the circle E = S1; the a priori measure ρ0 is the normalized Haar
measure on it and the lattice is Z2, while we identify the circle with the interval of angles
] − π,+π]. More formally, we consider the configuration space to be the measurable space
(Ω, E⊗Z2

, ρ×Z0 ) where

Ω = (S1)Z
d
, E = B(]− π,+π]) , ρ0 = λ]−π,+π] .

Here λX denotes the Haar measure (Lebesgue normalized) on X.

The reason why we focus on these models only, with N = 2, is that in such cases we shall
be able to extend the Ising case thanks to correlation inequalities adapted to this vectorial
context, that do not occur in higher spin dimensions, see [128] or later in our proofs. This two-
components spin framework allows also a proper stochastic order that permits us to extend
the concept of Global Specification to this vectorial case, as we did in the previous section.

At d = 2 in the n.n. case, the O(N)-model becomes the celebrated (classical) XY -model.
Here absence of spontaneous magnetization (Mermin-Wagner theorem [110], for a recent exten-
sion see e.g. [86]), plus some extra properties, gives a unique shift-invariant rotation-invariant
Gibbs measure at all temperatures, due to a result of [19]. At large distances, the spin-spin
two point correlation function is exponentially decaying at small β [107] but only algebraically
decaying at large β [63], beyond the Berezinskii-Kosterlitz-Thouless transition. It has been
sometimes called an “infinite-order” phase transition, since the corresponding free energy is
infinitely differentiable at the transition point (notice that other spin models with O(N)-
symmetry may display a first-order phase transition with a positive latent heat, see [51]).

9This is due to the fact that the finite- volume Hamiltonian is left unchanged by the simultaneous action of
an element of the (compact, Lie) orthogonal group on all the microscopic vectors.

10Other types of transitions are possible, related to fluctuations of magnetization, called quasilong-range
order in 2d or, beyond this case, other Berezinskii-Kosterlitz-Thouless transitions, see [59] or references here.
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Side remark on d = 1:
Note that at d = 1 with long-range interactions, for quadratically decaying interactions, for
Ising spins a Thouless effect occurs, namely, a discontinuous jump of the magnetization from
zero to a strictly positive value as β is increased [2, 126]. However, this does not occur for
vector spins [127]. For slower decaying long-range vector models, with decay power 1 < α < 2,
the behaviour is as for Ising spins, though, low-T magnetisation with an ordinary critical point.
See [66], [36], [69], [59] and corresponding bibliographical notes for further details.

We shall start from a plus phase µ+ obtained by a weak limit of some arbitrary b.c.,
using results from Ruelle [123] that the pure phases at low temperature – i.e. the extremal
translation invariant equilibirum states – are obtained by taking as boundary condition ⇀σi ≡ θ
for all i outside Λ where θ ∈] − π,+π] for us. Note that Fröhlich-Pfister [68] prove also that
all the pure phases are constructed in this manner.

We recall the standard results of the n.n. model with usual scalar product in the next
section (namely the Mermin-Wagner Theorem on absence of continuous-symmetry-breaking
in d = 2 [109, 110, 125, 69, 59] vs. phase transition in 3d, but also the Kunz-Pfister result for
(very) long-range interactions on existence of a phase transition at low T [95, 60]).

In the rest of the paper, and as the main novelty in this Gibbs vs. non -Gibbs framework,
we consider rotator models that will be either anisotropic n.n. (Section 5.1) or isotropic long-
range (Section 5.2). We also provide hints on how to exhibit a non-Gibbsian decimated
measure in absence of phase transition for the original model, for the classical 2d-n.n. rotator
(where we suspect the existence of bad configurations due to ”spin-flop”).

The potentials will be of the form

ΦA(σ) =

{
J(i, j) · 〈⇀σi · ⇀σj〉 if A = {i, j}
0 otherwise

(3.27)

where 〈 · 〉 is some inner product in R2. More precisely, we shall investigate and prove
non-Gibbsianness of the decimated measure at low temperatures in the following models V1-
V2-V3:

In all cases (including Anisotropic), monotonicity-preservation allows to get the well-
defined weak limits as in the Ising case :

Proposition 2 [54] Consider the XY -models defined from (3.27) with a ferromagnetic cou-
pling function J(·, ·), and the boundary condition θ = θ+ = +π/2 and θ = θ− = −π/2. Then
the weak limits

µ−(·) := lim
Λ↑Zd

γJΛ(·|θ−) and µ+(·) := lim
Λ↑Zd

γJΛ(·|θ+) (3.28)

are well-defined, translation-invariant and extremal elements of G(γJ). For any f bounded
increasing (for the sin-order defined previously), any other measure µ ∈ G(γJ) satisfies

µ−[f ] ≤ µ[f ] ≤ µ+[f ]. (3.29)

Moreover, µ− and µ+ are respectively left-continuous and right-continuous.

Furthermore, it is possible to get an extremal decomposition in terms of these weak limits
: Let θ be an everywhere σi = θ ∈] − π,+π] configuration. Then for any θ, there exist an
extremal state µθ, so that any µ ∈ G(γ) is written

µ =

∫ 1

0
αθ(µ)dνθ.
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Model V1. Anisotropic spin interaction, n.n. planar rotator model

This is a well-known model in theoretical physics, whose phase transition has been
conjectured by Fisher in 1967 [55], and first proved by Bortz and Griffiths in 1972 [16]
for large anisotropy, while Malyshev extended it for any anisotropy parameter κ in [108].
See also Costa-Mól [29], Fröhlich-Lieb [61], Hohenberg [84], Kunz-Pfister-Vuillermot [96],
Romerio-Vuillermot [121, 122] for more complete studies.

For a more precise discussion on the temperature-dependent anisotropy needed, see [18],
for a relation to Renormalization Group see [6] (Remark 2, p. 426). See also [17] for
correlation inequalities needed in the course of our proofs.

We use the description and results of Georgii ([69], chapters 16-20 and bibliographical
notes) and Friedli-Velenik ([59], Chapter 10). A parameter κ ∈ (0, 1) is introduced so
that the ordinary inner product in R2 is substituted by

〈⇀σi · ⇀σj〉κ ≡ σi1σj1 + κσi2σj2 , for i = (i1, i2), j = (j1, j2) ∈ Z2.

Thus we keep the n.n. coupling Jn.n. = J · 1|i−j|=1 and consider the pair potential Φ
with ΦA = 0 unless A = {i, j}, |i− j| = 1 where

ΦA(⇀σ) = −J〈⇀σi · ⇀σj〉κ.

The parameter κ ∈ [0, 1] is here the anisotropy parameter (so that the XY -model
is recovered at κ = 1). One can learn in the references above or in detail in [59],
Chapter 10, that there are indeed two ground states for this system at κ ∈ [0, 1] (with
corresponding Gibbs measures µ+, µ− ∈ G(β, κ), supposed to be the only extremal
phases). Fluctuations of the finite-volume magnetization concentrate along the first
direction at sufficiently low temperatures (Theorem 10.17). See also other investigations
with external fields in [69], p. 393, Chapter 18 (1st edition).

Consider the weak limits (they coincide with the preceding µ+, µ−), proven to exist (see
Fröhlich/Pfister 1983 [68], Griffiths [77] or Friedli/Velenik [59], pp 412-413), for (⇀e1,⇀e2)
being the canonical basis of Z2,

µ+(·) = µ+π/2(·) := lim
Λ↑S

γJ
κ
(·|⇀e2) and µ+(·) = µ−π/2(·) = lim

Λ↑S
γJ

κ
(·| −⇀e2) (3.30)

As we quote in Section 4, for an anisotropy parameter 0 < κ < 1 phase transition is
known to occur at low temperatures, with µ+ 6= µ− in such a way that the vertical
magnetizations differ, see (5.36).

Model V2. Isotropic long-range planar rotators

It is the vectorial variant of Model I3, with the configuration space Ω = (S1)Z
2

and the
long-range pair potential given for (α > d = 2) with ferromagnetic couplings as follows
: J ≥ 0, i, j ∈ Z2, and for any configuration ⇀σ,

J iso,α(i, j) :=
J

|i− j|−α · 〈
⇀σi, ⇀σj〉.

Similarly to the other models, one can consider weak limits with our + or − boundary
conditions, thanks to attractivity, in the same way as (3.30), and it has been known
since Kunz-Pfister 1976 [95], using a domination of a vector-spin variant of Dyson’s
hierarchical models that there also spontaneous vertical magnetization (5.36) holds. In
this phenomenon, the extension of Griffiths’ inequalities, initiated by Ginibre [71, 72],
valid only for two-component spins, is essential.
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4 Decimation of 2d Long-Range Ising Models

In the context of Ising spins, our extensions of the original Israel/van Enter-Fernández-Sokal
example of non-Gibbsianness deep in the phase transition region will be performed by adding
anisotropic or isotropic polynomial (very) long-range terms in three steps, for models 1., 2.
and 3. described below. In all models, we adapt the original proofs from the 2d-n.n. and
1d-Long-range contexts [41, 102, 46] to some some long-range contexts in 2d.

We recall the strategy used there, involving similar alternating bad configurations ω′alt =
(−1)i1+i2 for any site i = (i1, i2), the same Global Specifications, but also slightly different
energy estimates, also allowing to use Equivalence of Boundary Conditions in order to shield
off far away -direct- influences due to long-range terms.
We note that in the uniaxial or biaxial situation the total direct energy of a square of size L
with the outside of an annulus of size N(L) is of order L2[N(L)]1−α, while in the isotropic case
it will be of order L2[N(L)]2−α. This will give us a lower bound on the size of the annulus.
The indirect influence from across the boundary decays in unique phase in the annulus in a
way which is uniform in the annulus size. Thus we expect that the annulus size needed in the
proof will indeed be of the order suggested by the argument above.

Let us recall the results of [24] with our notations. Two boundary conditions ω1 and ω2

are said to have a finite energy difference when

Cω1,ω2 := sup
Λ

sup
σ̄Λ

∣∣∣ ∑
X∩Λc 6=∅,X∩Λ6=∅

ΦX(σ̄Λω
1
Λc)− ΦX(σ̄Λω

2
Λc)
∣∣∣ < +∞.

In such a case, one concludes ([24]) that the infinite-volume limits with these boundary
conditions will have an equivalent (or the same) extremal decomposition (extremal equiva-
lence) so that it’s enough to consider any of them (and forget any influences outside a large
enough annulus).

In fact, we should show that it is enough to estimate for the sum under the absolute value
the difference

H+,ω1

Λ (σΛ)−H+,ω1

Λ (σΛ)

for relevant choices of b.c. in subsets of neighborhoods where in annuli we have suitably
chosen sizes, where H+,ω

Λ is the Hamiltonian for ω-b.c. for the constrained (infinite-volume)

Gibbs measures µ+,ω
S given by (2.23) and (2.12), living on the set S of internal spins (the spins

living on a decorated lattice) plus the origin.

In all cases we consider, as a necessary step we will need to prove the following bounded-
energy estimate, where ω′+,1/2 will act as boundary conditions from the even spins to the
internal spins, with +-b.c. very far away (that we will forget about, because asymptotically
the reasoning will obviously be justified) :

Lemma 1 Write Λ′ = Λ′(L) = ([−L,+L] ∩ Z)2 and ∆′ = ∆′(N) = ([−N,+N ] ∩ Z)2, with
N > L. Then, there exist sub-neighborhoods N+

1 := N+
L,N (ω′alt) and N−1 := N−L,N (ω′alt) such

that for N = N(L) – depending on the model and on the decay α –, and for ω+
1 ∈ N+

1 and
ω+

2 ∈ N−1 b.c. we obtain ∀Λ ∈ S∣∣∣HΛ,ω+
1

(σΛ)−HΛ,ω+
2

(σΛ)
∣∣∣ ≤ C <∞. (4.31)
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In the following subsections, we describe the general common steps of the proofs, and
then discuss in some detail the different adaptations to obtain some bounds on the size of the
annulus (derivation of Lemma 4.31 in both cases).

4.1 Decimation of the Bi-axial n.n./very Long-Range Cases α1 > 1

We start as a warm-up with a mixed model, where the extension of the n.n. case is performed
only along vertical lines, where it is very long-range with decay α1 > 1, in the ferromagnetic
case J ≥ 0 :

Jn.n.,1(i, j) := J · 1|i−j|=1 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0.

The existence of a phase transition is deduced from the classical n.n. case by stochastic
domination, and we consider the decimation of the + -phase µ+. As in this case the adaptation
is similar to that of the 1d long-range case of [46], we only sketch it and focus on the main
difference between this model and the n.n. 2d-case : the choice of the size of the annulus
∆′N = ([−N,+N ] ∩ Z)2 (and thus ∆N = ([−2N,+2N ] ∩ Z)2) so that the neighborhoods
NL,N (ω′alt) can exhibit different magnetization values.

Let us come back to the context of Section 1, where the decimation transformations have
been defined. As already claimed, and proven by e.g. [41], the special configuration, which
will be shown to be a point of essential discontinuity, is as usual the neutral alternating
configuration ω′alt, defined naturally as

(ω′alt)i = (−1)(i1+i2), ∀i ∈ (i1, i2) ∈ Z2.

The main results of this section, non-Gibbsianness at low temperatures, will as usual
follow from the observation that when a phase transition holds for the original specification –
at low enough temperature – the same is true for the constrained specification with alternating
constraint, albeit one needs even lower temperatures to have a phase transition, leading to
non-Gibbsianness of ν+. From this phase transition, one will get the following essential
discontinuity result as soon as long-range effects are shielded off by choosing a large enough
annulus – the same as in [46] in this Subsection 4.1 –. The shielding-off of long-range effects
will be (as in [46]) neglected by (4.31) and an argument similar to Equivalence of boundary
conditions as a screening effect will be combined with stochastic domination by external
fields of homogeneous signs to yield essential discontinuities via Lemma 2, and then non-
Gibbsianness.

Lemma 2 Consider our Bi-axial n.n./long range model with an horizontal range 1 < α1 ≤ 2,
at sufficiently low temperature. Let Λ′ ⊂ ∆′ ∈ S and consider two arbitrary configurations
ω′+ ∈ N+

Λ′,∆′(ω
′
alt) and ω′− ∈ N−Λ′,∆′(ω′alt). Then ∃δ > 0, and ∃Λ′0 big enough s.t. for some

∆′ ⊃ Λ′ ⊃ Λ′0 with ∆′ \ Λ′ chosen big enough compared to Λ′, for all ω+ ∈ T−1{ω′+} and all
ω− ∈ T−1{ω′−} ∣∣∣µ+,ω+

(2Z2)c∪{0}[σ0]− µ+,ω−

(2Z2)c∪{0}[σ0]
∣∣∣ > δ. (4.32)

Proof of Lemma 2 for anisotropic 2d n.n./long-range:

To prove non-Gibbsianness in our models, we need to prove an essential difference between
the constrained magnetizations

M+ = µ+,ω+

(2Z2)c∪{(0,0)}[σ(0,0)] and M− = µ+,ω−

(2Z2)c∪{(0,0)}[σ(0,0)]
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but to do so we first have to prove that the later are well-defined and independent of asymptotic
effects.

Write Λ′ = Λ′(L) = ([−L,+L] ∩ Z)2 and ∆′ = ∆′(N) = ([−N,+N ] ∩ Z)2, with N > L.

Let us give some further, more precise, description of our notations. In (4.32), the involved
constrained measures µ+,ω

S are infinite-volume Gibbs measures on the internal spins defined
in (2.23) by taking the weak limit with +-b.c. with the constraint that configurations coincide
with ω on Sc = (2Z2)c∪{(0, 0)}, i.e. the complement of the decorated lattice (plus the origin).

Step 1 : Equivalence of b.c. to get rid of the long-range effects.

Denote formally by H the Hamiltonian of the constrained specifications for ω+
1 and ω+

2 as
prescribed. Proceeding as in [46], one can bound uniformly in L the relative Hamiltonians with

either ω+
1 and ω+

2 b.c. to get (4.31) in this case, as soon as one takes N = N(L) = O(L
2

α−1 )
(thus larger than in 1d):

δH
+,ω′

1/2

L :=
∣∣∣HΛ,ω+

1
(σΛ)−HΛ,ω+

2
(σΛ)

∣∣∣ ≤ C <∞.

To get it and (4.31) in this case, we use the long-range structure of the interaction to get
a uniform bound

CΛ,∆
ω′1,ω′2

= δH
+,ω′

1/2

L ≤
∑
x∈Λ2L

2
∑
k>2N

1

kα
< C,

as soon as
N(L) >> L

2
α−1 (4.33)

because then for any σΛ ∈ ΩΛ

δH
+,ω′

1/2

L ≤ 2 · (2L)2 · (2N)1−α

1− α = 8L2 · (2N)1−α

1− α .

We have C = 1 when

(2N)1−α =
1− α

8
L−2

i.e.

N =
1

2

(
1− α

8

)1/1−α
L2/(α−1)

so that choosing N = N(L) as in (4.33) will do the job.

Then, by [24] (see also [59]), all of the limiting Gibbs states obtained by these boundary
conditions have the same measure-zero sets, and therefore an equivalent decomposition into
extremal Gibbs states. The latter decomposition will in fact be presumably trivial here, as
we shall see that the Gibbs measure will be unique, but this is not needed at this step. Thus
one gets the same magnetisation on the different sub-neighborhoods : M+ = M+(ω,N,L) =
M+(ω+

1 , N, L) = M+(ω+
2 , N, L) is indeed independent of ω as soon as it belongs to the pre-

image of the +-neighborhood of the alternating configuration.

Step 2 : Domination by uniform fields – Uniqueness for invisible spins

Consider boxes Λ′L ⊂ ∆′N of linear dimensions 2L, 2N (see Fig. 1).

For any configuration ω′+ ∈ N+
Λ′,∆′(ω

′
alt), we have

ν+[σ′(0,0)|F{(0,0)}c ](ω
′+) = µ+[σ(0,0)|FcS ](ω+) ∀ω+ ∈ T−1{ω′+}

=
by (2.12)

Γ+
S (σ(0,0) | ω+) = lim

∆↑S
γJ∆(σ(0,0) | +Sω

+
Sc)

=
〈
σ(0,0)

〉h+
j

S .

(4.34)
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Figure 1: The origin is in black and only the decorated lattice is shown (a portion of the
original lattice is visible inside the box Λ′L, depicted by green crosses).

for a box ∆ satisfying ∆ ⊂ (2Z2)c ∪ {(0, 0)}, where 〈· · · 〉h
+
j

S denotes expectation with respect
to the system at infinite volume S with respect to the inhomogeneous effective field (h+

j )j

depending on the lattice site j. The crucial point is that
〈
σ(0,0)

〉h+
j

S in (4.34) can be dominated
below by an adaption of a rigorous argument due to Ruelle (see [124], Theorem 2). Indeed,
observe that

h+
j = hj(ω

+) =
∑
k 6=j

ω+
k

kα
>
∑
k 6=j

ω+,0,L

kα
= cα

1

Lα−1
> 0 (4.35)

where ω+,0,L is the configuration which is zero inside ΛL, and + outside, and c is some constant
depending on α. Thus, for any fixed L, the fields h+

j are strictly positive, and we can always

choose L,N sufficiently large such that 〈σ0〉
h+

(0,0)

S > δ
2 , for some δ possibly depending on L.

Hence we still get the essential discontinuity in the + case, and an analogous statement holds
for the measure ν− mutatis mutandi, namely,

ν−[σ′(0,0)|F{(0,0)}c ](ω
′−) <

〈
σ(0,0)

〉h−
(0,0)

S <
δ

2
< 0.

Thus we get the following

Theorem 4 For any 1 < α1 ≤ 2, at low enough temperature β > β
J(α1,∗)
c , the decimated

measure ν+ of the plus phase µ+ for the anisotropic long-range Ising model I1, ν+ = Tµ+, is
non-quasilocal, hence non-Gibbs, and so are all decimated Gibbs measures.
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4.2 Decimation of the Bi-axial (very) Long-Range Model α1, α2 > 1

We focus on the very long-range cases where both α1 and α2 are between11 1 and 2.

Recall (d = 2, α1, α2 > 1) : J ≥ 0,

J (α1,α2)(i, j) := J · |i2 − j2|−α2 · 1|i1−j1|=0 + J · |i1 − j1|−α1 · 1|i2−j2|=0.

To prove Lemma 2 in this anisotropic/long-range case, we need to adjust the size of the
annulus by proceeding as in (4.33, with only slight differences in the computation of the
2d-sums. Indeed, the energy difference estimation becomes, with the same notations

CΛ,∆
ω′1,ω′2

= δH
+,ω′1/2
L ≤

∑
x∈Λ2L

2
( ∑
k1>2N

k−α1
1 +

∑
k2>2N

k−α2
2

)
.

Write α := min(α1, α2). Then proceeding as in model I, we get that for N bigger than

N(L) =
1

2

(
1− α

16

)1/1−α
L2/(α−1)

suffices. One can thus take the same annulus as in model I, for α being the slowest decay
between the vertical and the horizontal one.

Proceeding as in the previous subsection, by using the global specification and dominations
with external fields of homogeneous signs, we eventually get

Theorem 5 For any 1 < α1, α2 ≤ 2, at low enough temperature β > β
J(α1,α2)
c , the decimated

measure ν+ of the plus phase µ+ for the anisotropic long-range Ising model I2, ν+ = Tµ+, is
non-quasilocal, hence non-Gibbs, and so are all decimated Gibbs measures.

4.3 Decimation of the Classical Isotropic Long-range Models with α > 2

Recall our model in the 2d-vectorial context : (α > 2) : J ≥ 0, i, j ∈ Zd,

J iso,α(i, j) := J · |i− j|−α.

Proof of Lemma 2 for isotropic 2d long-range models:

We proceed as in models I1 and I2 above, with a slightly different estimation of the
energy difference due to the bi-dimensional character of the interaction, leading to double
sums instead of single sums.

Indeed, by evaluating it, one gets, still with the same notations

CΛ,∆
ω′1,ω′2

≤
∑
x∈Λ2L

2 ·
∑
y∈Λc2N

1

|y|α

which is of the order

C = 2 · (2L)2 (2N)2−α

(2− α)

11It is not difficult to see that the other values are contained in the n.n. cases (or direct Markov order-R
adaptations thereof). Note that it is in fact enough that one of the α’s being between 1 and 2, because then a
non-zero spontaneous magnetization would already occur.
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and eventually a slightly smaller annulus size

N >>
1

2

(
2− α

8

) 1
2−α
· L 2

α−2

and, of course for α > 2

N(L) = L
2

α−2 .

We get, proceeding similarly with global specifications and stochastic dominations,

Theorem 6 For any 1 < α ≤ 2, at low enough temperature β > β
J(α)
c , the decimated measure

ν+ of the plus-phase µ+ for the anisotropic long-range Ising model I3, ν+ = Tµ+, is non-
quasilocal, hence non-Gibbs, and so are all decimated Gibbs measures.

5 Decimation of 2d Rotator Models

5.1 Decimation of 2d n.n. Rotator Models with Spin Anisotropy

We consider the anisotropic nearest-neighbour spin-interaction model VI with an anisotropy
favouring the direction of the particular configuration θ = +π

2 , in order to make use of the
monotonicity and partial order described in the previous section.

For an anisotropy parameter κ ∈ (0, 1), for configurations (⇀σi)i∈Z2 ∈ (S1)Z
2
, we consider

the n.n. pair potential Φ = Φκ defined so that ΦA = 0 unless A = {i, j}, |i− j| = 1 where

Φ{i,j}(
⇀σ) = −J〈⇀σi · ⇀σj〉κ = −J

(
σ

(2)
i σ

(2)
j + κσ

(1)
i σ

(1)
j

)
and n.n. coupling

Jn.n. = J · 1|i−j|=1

where we have written σ
(1)
i and σ

(2)
i for the the coordinates of the “spin” ⇀σi in the canonical

basis (⇀e1,⇀e2). Note that the anisotropy here is along the vertical direction, which is important
for what follows (and consistent with the partial order introduced in Section 2). This indeed
provides at low temperature two opposite extremal Gibbs measures, a “plus”-phase µ+ globally
oriented upwards, and its opposite “minus” phase µ− globally oriented downwards.

Thanks to the partial order, the specification γJ
κ

is monotonicity-preserving and the above
“extremal” phases can be selected by the up or down b.c. ±π

2 , and we consider the weak limits,
proven to exist (see Fröhlich/Pfister 1983 [68], Griffiths [77] or Friedli/Velenik [59], pp 412-
413), for (⇀e1,⇀e2) being the canonical basis of Z2,

µ+(·) = µ+π/2(·) := lim
Λ↑S

γJ
κ
(·|⇀e2) and µ−(·) = µ−π/2(·) = lim

Λ↑S
γJ

κ
(·| −⇀e2)

with {µ−, µ+} ∈ G(γJ
κ
). Our model is n.n. thus the specification is also quasilocal (and in

particular continuous in any direction [54, 106], so also right- or left-continuous). All together,
by right continuity and extremality (in the sense of the stochastic order), this allows us to
extend the concept of global specification to this vectorial context : there exists a global
specification Γ+ for µ+ expressed in terms of weak limits of the constrained specification as
in Theorem 2.12.
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Now we consider the decimation of the +-phase ν+ = Tµ+. We prove that it is a non-
Gibbsian measure by proceeding as in Section 4.

To get it one can use the existence of a spontaneous vertical magnetization, proven by
Ginibre [71], Bortz et al. [16], Fröhlich/Lieb [61] or Kunz et al. [96, 97] or Malyshev [108],
with the choice of the local function

f(⇀σ′) = ⇀σ
′(2)
{0,0}

corresponding to the vertical component of the spin at the origin (vertical magnetization).

What is important for us here is that at low temperature, for some values of κ (∈ (0, 1)),
one can define the weak limits µ+ and µ− such that a vertical spontaneous magnetization
holds :

m−(β) := E−µ [⇀σ
(2)
{0,0}] < 0 < E−µ [⇀σ

(2)
{0,0}] := m+(β). (5.36)

This is performed using correlation inequalities coined by Ginibre [71] in this vertical
context (see e.g. the Peierls arguments of Bortz et al. [16], Malyshev [108], or inequalities
from Dunlop et al. [38, 37] or Kunz et al. [97]).

Similarly the standard case of the 2d-n.n. Ising model, this can be use to estimate the
conditional expectations of the decimated measures and prove essential discontinuities, either
by proving spontaneous magnetization on the decorated square lattice, either by dominating
the later by the one above on the full lattice (as we did for Ising spins).

To prove essential discontinuity, we consider again the alternating configuration

⇀ω′alt = (−1)i1+i2 ∗⇀e1

as a bad configuration and prove that for some small ε > 0, for large enough volumes Λ = ΛL,

∆ = ∆L+1, there exist two open subsets in all sub-neighborhoods, N+ := N+π
2

Λ,∆,ε(
⇀ω′alt) and

N− = N−
π
2

Λ,∆,ε(
⇀ω′alt) such that for L,N large enough, for all ⇀ω′+ ∈ N+ and ⇀ω′− ∈ N−,∣∣∣ν+

[
⇀σ
′(2)
{0,0} | F

′
{0,0}c

]
(⇀ω′+)− ν+

[
⇀σ
′(2)
{0,0} | F

′
{0,0}c

]
(⇀ω′−)

∣∣∣ > δ (5.37)

for some δ > 0. Note that in these open subsets, the spins in the volume of size L are ε-close
to the alternating configuration, in the annulus they are ε-close to either a plus or a minus
configuration, and outside the annulus they are arbitrary. The constant ε can be chosen
small enough so that the total energy differences from the pure alternating and plus or minus
configurations remains small.

To get (5.37), we now use the extension of Global Specifications – originally stated in
[54] for Ising spins only (E = {−1,+1} – to this (compact) vectorial context (see Section
1). Write again Γ+ for such a global specification consistent with µ+. The magnetizations of
above reads, as in the Ising spin context, as :

〈⇀σ′(2)
(0,0)〉

+
S,ω′ = ν+

[
⇀σ
′(2)
(0,0) | F

′
(0,0)c

]
(⇀ω′

+
) = µ+

[
⇀σ

(2)
(0,0) | F

′
Sc

]
(⇀ω′

+
)) = Γ+

S

(
⇀σ

(2)
(0,0)|⇀ω

′+)
where S is as in the Ising context, the complement of the even sites plus the origin, which is
not the complement of a finite set : Sc = (2Z2) ∩ {(0, 0)}c.

Similarly on for ⇀ω′− ∈ N−,

〈⇀σ′(2)
(0,0)〉

−
S,ω′ = ν+

[
⇀σ
′(2)
{0,0} | F

′
{0,0}c

]
(⇀ω′
−

) = µ+
[
⇀σ

(2)
{0,0} | F

′
Sc

]
(⇀ω′
−

)) = Γ+
S

(
⇀σ

(2)
{0,0}|⇀ω

′−).
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Now, using (5.36), we get (5.37) because for any δ > 0 we can take L,N large enough so
that there exists a positive external field h with

〈⇀σ′(2)
(0,0)〉

+
S,ω′ > 〈⇀σ′

(2)
(0,0)〉h >

δ

2

and this yields essential discontinuity and non-Gibbsianness at low temperature. �

5.2 Decimation of Planar Long-Range Rotator Models

In the context described in Section 2, we proceed similarly to prove the non-Gibbsianness of
the measures µ+π/2 and µ−π/2, for a bad configuration chosen to be the configuration ⇀σθ,alt

where for i = (i1, i2),

⇀σθ,alt
i = (−1)i1+i2θi.

The proof requires only to combine the Equivalence of boundary conditions à la Bricmont-
Lebowitz-Pfister [24, 46] used in Model I3 of this paper (with exactly the same estimate), so
that Lemma 4.1 holds, with the same choice of annulus, with the use of the Global specification
performed in the model V1 above. Using exactly the same techniques, we get an essential
discontinuity and non-Gibbsianness of the decimated measure for this model. Just as before,
we get open sets by having the local configurations in sufficiently small intervals, both in
volume and annulus.

On these open sets N− (res. N+), one selects on the invisible spins the negatively (resp.
positively) magnetized phase obtained by Kunz-Pfister [95], where here the magnetization has
to be understood in the sense of the local function “vertical magnetization”, as in the previous
anisotropic model

f : ⇀ω′ 7−→ f(⇀ω′) = ω
′(2)
(0,0).

Then, the strictly negative (resp. positive) values coined by Kunz-Pfister for very long
ranges α ∈ (2, 4) yields a significant difference on the two neighborhooods of the alternat-
ing configuration, leading to non-Gibbsianness at low temperature after the use of global
specifications (valid in this context):

Theorem 7 For any 2 < α ≤ 4, at low enough temperature β > β
J(α)
c , the decimated measure

ν+ of the plus-phase µ+ for the anisotropic long-range rotator model V2, ν+ = Tµ+, is non-
quasilocal, hence non-Gibbs, and so are all decimated Gibbs measures.

5.3 Decimation of Rotator Models, Extensions to Different Dimensions.

In fact, this argument also works immediately for the one-dimensional case with 1 < α < 2.
Moreover, in higher dimensional n.n. models, as well as long-range models the analysis also
applies. We just have to notice that the conditioned models are again vector models which
have phase transitions, proven either by invoking [62] or [4] for n.n. models, and either one of
these papers or [95] combined with correlation inequalities, for various long-range models.
Concluding, in all examples discussed, decimating a low-temperature Gibbs measure at suffi-
ciently low temperatures results in a non-Gibbsian measure.
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6 Comments and Perspectives

In an upcoming Part 2 we will discuss cases where there is a difference in analysing the phase
transition structure of the original model and suitably conditioned (on bad configurations)
models. This will in particular include a number of borderline cases, in which the original
models have no rotation-symmetry breaking, but a properly chosen conditioning may induce
a transition which breaks a discrete – spin-flip-like – symmetry, due to the occurrence of
a “spin-flop” transition. In contrast to what happens with stochastically evolved measures
[49], the alternating configuration in decimated measures will be a continuity point in these
examples, but we can find different spin configurations which act as discontinuity points.
These borderline cases occur in dimensions d = 1 and d = 2: in particular are included in
dimension d = 2 either short-range models or long-range rotator models with decay at last as
fast as 1/r4, and in dimension d = 1 the 1/r2-rotator model.

Our results about the non-Gibbsianness of decimated Gibbs measures apply at very low
temperatures; it is not to be expected that they extend all the way to (or even above) the
critical temperature, in view of the analysis of the quite similar Ising situations for n.n. models
in general dimensions and long-range models in d = 1, in [80, 90].
Note that some of the models in the class we discuss above are not fully understood, even at
the physics level. In particular, it has recently been suggested [70] that for some decay powers
the long-range isotropic vector models may have an intermediate Kosterlitz-Thouless phase in
between the high-temperature regime with summable decay and the low-temperature regime
where spontaneous magnetisation occurs. It would of course be of great interest if this could
be proven, but this seems not within reach to us by the methods at our disposal.
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Mécanique Statistique (Société Mathématique de France), arXiv:1911.01860, 2021+.

[104] J.L. Lebowitz. GHS and Other Inequalities. Comm. Math. Phys. 35:87–92, 1974.

[105] T.D. Lee, C.N. Yang. Statistical Theory of equations of state and phase transitions. II.
Lattice gas and Ising model.

[106] C. Maes, F. Redig, A. van Moffaert. Almost Gibbsian vs. Weakly Gibbsian measures.
Stoch. Proc. and Appl. 99:1–15, 1999.

[107] O.A. McBryan, T. Spencer. On the Decay of Correlations in SO(N)-Symmetric Ferro-
magnets. Comm. Math. Phys. 53: 299-302, 1977.

[108] V.A. Malyshev. Phase Transitions in Classical Ferromagnets with Arbitrary Paramterer
of Anisotropy. Comm. Math. Phys. 40:75–82, 1975.

[109] N.D. Mermin. Absence of Ordering in Certain Classical Systems. J. Math. Phys. 8:1061–
1064, 1967.

[110] N.D. Mermin, H. Wagner. Absence of Ferromagnetism or Antiferromagnetism in One-
or Two–dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17:1133–1136, 1966.

[111] A. Messager, S. Miracle-sole, C.-E. Pfister. Correlation Inequatlities and Uniqueness
of the Equilibrium State for the Plane Rotator Ferromagnetic Model. Comm. Math.
Phys.58:19–29, 1978.

[112] L. Mól, A. Pereira, W. Moura-Melo. On Phase Transition and Vortex Stability in the
Generalized XY -models. Phys. Rev. Lett. A, 319:114-121, 2013.

38



[113] J.L. Monroe. Correlation Inequalities for Two-Dimensional Vector Spin Systems. J.
Math. Phys. 16:1809–1812, 1975.

[114] C.M. Newman. Moment Inequalities for Ferromagnetic Gibbs distributions. J. Math.
Phys. 16:1956, 1975.

[115] R. Peierls. On Ising’s Model of Ferromagnetism. Proc.Camb.Phil.Soc. 32, 1936.

[116] C. E. Pfister. On the Symmetry of the Gibbs States in 2D Lattice Systems. Comm.
Math. Phys., 79:181-188, 1981.

[117] C. Preston. Gibbs states on countable sets, Cambridge University Press, 1975.

[118] C. Preston. Random Fields. Lectures Notes in Mathematics 534, Springer, 1976.

[119] C. Preston. Construction of Specifications. In Quantum Fields - Algebras, Processes
(Bielefeld symposium 1978) pp 269-282, ed. L. Streit, Wien-NY : Springer 1980.

[120] A. Raoufi. Translation-Invariant Gibbs States of Ising Models: General Settings. Ann.
Proba. 48, no 2:760–777, 2020.

[121] M. Romerio, P.-A. Vuillermot. Absence of Long-Range Order for a Class of Two-
Dimensional systems. Group theoretical methods in physics (Proc. Third Internat. Colloq.,
CNRS CPT Marseille, 1974), Vol. 1, pp. 153–159, 1974.

[122] M. Romerio, P.-A. Vuillermot. Absence of Ordering in a Class of Lattice Systems. Comm.
Math. Phys. 41:281–288, 1975.

[123] D. Ruelle. Statistical Mechanics. New York : Benjamin, 1969.

[124] D. Ruelle. On the Use of ”Small External Fields” in the Problem of Symmetry Break-
down in Statistical Mechanics. Ann. Phys. 69, no 2:366-374, 1972.

[125] S.B. Shlosman. Absence of Continuous Symmetry Breakdown in Two-Dimensional Mod-
els of Statistical Physics. Theor. Math. Phys.33:897–902, 1977.

[126] B. Simon, A.D. Sokal. Rigorous Entropy-Energy Arguments. J. Stat. Phys. 25, no 4:679–
694, 1981.

[127] B. Simon. Absence of continuous symmetry breaking in a one-dimensional n−2 model.
J. Stat. Phys. 26, 307-311, 1981.

[128] B. Simon. Twelve Tales in Mathematical Physics: An Expanded Heinemann Prize Lec-
ture. arXiv:2011.12335, 2020.

[129] A.D. Sokal. Existence of Compatible Families of Proper Regular conditional probabili-
ties. Z.W.v.Geb., 56, no 4: 537-548, 1981.

[130] W.G. Sullivan. Potentials for Almost Markovian Random Fields. Comm. Math. Phys.
33:61-74, 1973.

39


