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Abstract

We characterize the set of finite shapes with minimal perimeter on hyperbolic lattices given

by regular tilings of the hyperbolic plane whose tiles are regular p-gons meeting at vertices of

degree q, with 1/p+1/q < 1
2 . The main tool is a layer decomposition due to Rietman–Nienhuis–

Oitmaa and Moran, which allows us to prove convergence towards the Cheeger constant when

these shapes exhaust the lattice. Furthermore, we apply a celebrated result of Floyd–Plotnick,

which will allow us to compute the Euler characteristic for these graphs in terms of certain

growth functions and the number of n-sized animals on those lattices.
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1 Introduction

Hyperbolic lattices Lp,q play a crucial role in geometry, topology, and mathematical physics when

considering spaces beyond the Euclidean setting, for example by including negative constant curva-

ture in the space. Some concrete applications can be found in e.g. crystallography [2], non-Euclidean

analog of the quantum spin Hall effect [17] or quantum electrodynamics [8], with remarkable exper-

imental consequences [3].

These lattices are discrete symmetry groups acting on the hyperbolic plane, forming regular

tilings or tessellations of the two-dimensional space with constant Ricci curvature of −1 like the

Poincaré disc. Moreover, they form the simplest examples of regular lattices (p vertices of degree

q) associated to a non-Euclidean geometric setting and have been constructed through a layer

decomposition in [13]. For examples, see Figures 1.1 and 1.2. In [13], the authors observed that

these lattices can alternatively be constructed through successive layers of tilings, starting from a
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Figure 1.1: Embedding of L7,3 in the hyper-

bolic disc

Figure 1.2: Embedding of L3,7 in the hyper-

bolic disc

fundamental tiling, where the vertices in each layer follow a simple recursive pattern. This recursive

structure was then explicitly used in [11] to compute the growth rate of these lattices.

Invariants are quantities or properties that remain unchanged under certain transformations.

In the context of hyperbolic lattices, they can be algebraic, geometric, or topological, and they

help characterize the intrinsic properties of these structures. In this work, we will be specifically

interested in two topological invariants, namely the Cheeger or isoperimetric constant and the Euler

characteristic of hyperbolic lattices.

Isoperimetric constants ie(·) are important because they quantify how efficiently a shape encloses

an area (in two dimensions) relative to its perimeter, and because they quantify global connectivity

in a graph. Intuitively, the isoperimetric constant of a graph represents the measure of how difficult it

is to separate the graph into two parts. A high isoperimetric constant implies that every finite subset

of vertices has many edges connecting it to the rest of the graph, indicating strong connectivity.

Conversely, if the isoperimetric constant is zero, the graph contains finite subsets with very few

boundary edges, suggesting a structure that can be easily separated (such as Zd which are examples

of amenable graphs).

The 1-skeleton of hyperbolic lattice provides an example of an infinite non-amenable graph G,

i.e. ie(G) > 0, meaning that no finite subset has a small boundary relative to its size. The positivity

of ie(G) explains why these graphs (and models defined on these graphs) behave differently from

their counterparts on classical structures like Zd.

For example, percolation follows a distinct pattern on these lattices [10, 6], as e.g. there are two

percolation thresholds where one has regimes in which there are 0, infinitely many infinite clusters

or 1 infinite cluster, analogously to what happens for percolation on Td × Z, see also [5].

The ferromagnetic nearest-neighbors Ising model on these lattices also behaves much differently

from its counterpart on Z2 at low temperature. In the latter setting, Aizenmann [1] and Higuchi [7]

proved that the set of extremal Gibbs states at low temperature consists of two measures. For

hyperbolic lattices, it is now known that there are uncountably many extremal Gibbs states at low

temperature [4], indexed by certain bi-infinite geodesics on the dual lattice (similar to Dobrushin

interfaces), providing a positive answer to a broader conjecture by Series–Sinai [15] in this special

case.

Another important question related to the isoperimetric problem is what are the minimal shapes
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associated with the minimal perimeter given a fixed volume and whether they realize the isoperi-

metric constant. For example, in Zd minimal shapes are squares and in Rd balls.

In [6, Theorem 4.1] the authors compute the value of the isoperimetric constant ie(G) for the

hyperbolic lattice and mention in [6, Remark 4.3] that the combinatorial balls do not realize the

isoperimetric constants. The authors consider combinatorial balls in the dual lattice L′
p,q = Lq,p

starting from a vertex o.

In this paper, we prove the following results:

Theorem. [Shapes of minimal perimeter] For a fixed volume N ∈ N, there exists an explicit

set of shapes with strict minimal perimeter MN .

In particular, the ratio between the external boundary and the number of vertices in these shapes

converges towards ie(Lp,q), when the shape exhausts Lp,q. This theorem provides an answer to a

long-standing open question.

Theorem. [Häggström–Jonasson–Lyons constant via limits] For ie(Lp,q) computed in [6,

Theorem 4.1] we have that

ie(Lp,q) = lim
|M |→∞

|∂eM |
|M |

,

where M ∈ MN .

The Euler characteristic χ is a fundamental invariant in topology and combinatorics that provides

insight into the structure of shapes, surfaces, and graphs. Originally introduced by Leonhard Euler

in the context of polyhedra, it has since found applications in graph theory, network analysis, and

computational topology. For finite graphs it is equal to the number of vertices and number of faces

minus the number of edges. Applications can be found for example in topological data analysis [16]

or network analysis [9]. Intuitively, the Euler characteristic describes how well connected a graph

or surface is. A positive χ means that the graph is simply connected whereas a negative χ indicates

that it has holes. For infinite graphs it is not obvious how to define the Euler characteristic. A

pioneering work by Floyd–Plotnick [12] relates the growth functions associated on these Fuchsian

groups to their Euler characteristic. We will use their result to prove that:

Proposition. [Euler characteristic] Let Gp,q be the Fuchsian group associated to Lp,q. Then

its Euler characteristic is given by

X (Gpq) =
2q + 2p− pq

2p
.

In the Corollary 3.4 we compute the explicit number of animals of size n in the graph Lp,q.

The structure of the paper is as follows. In Section 2 we will define all objects and fix notation,

Section 3 contains all results which are proven in Section 4.
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2 Definitions and notations

Consider a general graph G = (V,E) and let A ⊂ V be a subset of vertices. We denote by |A|
the cardinality of A and by Ac = V \ A the complement of A in V . Two vertices are connected if

there exists an edge between them. The set A is called connected, if for each v, u ∈ A there exists

a sequences of connected vertices in w1, ..., wn ∈ A such that w1 = v and wn = u. The perimeter

|∂eA| of the set A is the cardinality of the external boundary of A, defined as

|∂eA| := |{(v, w) ∈ E | v ∈ A, w ̸∈ A}|. (2.1)

Definition 2.1. (i) (Finite graphs) The Cheeger (or isoperimetric) constant im, resp. the Cheeger

geometric constant igm, are defined as

im(G) = min
A⊂V,
|A|=m

|∂eA|
|A|

and igm(G) = min
A⊂V,
|A|=m

|∂eA|
vol(A)

, (2.2)

where vol(A) is the sum of the degrees of the vertices, i.e. vol(A) =
∑

v∈A deg(v).

(ii) (Infinite graphs) The Cheeger constant of G is defined as follows

ie(G) = inf
A⊂V,

0<|A|<∞

|∂eA|
|A|

. (2.3)

We will define the hyperbolic lattice using the construction from [13]. Let {p, q} be two integers

such that 1
p + 1

q < 1
2 . Gp,q is the Fuchsian group defined as follows

Gp,q := ⟨a, b|ap, bq, (ab)2⟩ (2.4)

where a denotes the rotation around a given lattice point over an angle α = 2π/q and b a rotation

around the center of an adjacent face over an angle β = 2π/p. The rotation is defined w.r.t. the

hyperbolic metric (remark that we fix the scalar curvature to −1 with this choice)

ds2 =
4(dx2 + dy2)

(1− x2 − y2)2
.

The group Gp,q ⊂ PSU(1, 1) is a subgroup of the group of isometries of the unit disc in the complex

plane. A representation ρ of a, b can be defined in the following way:

ρ(a) = ±

(
eiβ/2 0

0 e−iβ/2

)

ρ(b) = ± 1

1− r2

(
eiα/2 − r2e−iα/2 −r(eiα/2 − e−iα/2)

r(eiα/2 − e−iα/2) e−iα/2 − r2eiα/2

)

and r2 = cos((α+β)/2)
cos((α−β)/2) .

Definition 2.2. The hyperbolic lattice Lp,q = (V, E) is defined as follows. Choose z = o as the

center of the fundamental face and choose z = r an adjacent lattice point. The vertices are generated

by words a, b acting on z = r. Edges are drawn between points as a result of the action of g1, g2 ∈ Gp,q

on r if g2 = g1a
nbam for some m,n = 0, . . . , p− 1.
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Note that the faces are equilateral and the lattice Lp,q is naturally embedded into the Poincaré

disc, see Figures 1.1, 1.2.

In the following, we will describe an alternative way to construct Lp,q in terms of layers. Let

k ∈ N ∪ {0}, we define the k-th layer, denoted by Lk, as the set of vertices in V constructed in the

following way.

The zero layer L0 is the set of p vertices in the unique face of Lp,q containing o. The first layer

L1 is the set of vertices (not in L0) of all the faces which are adjacent with the face containing o

(including those sharing just a vertex). For k ≥ 2, we define Lk iteratively as the set of vertices of

all the faces which are adjacent with the face containing the vertices in Lk−1. Denote by Bk(o) :=⋃k
l=0 Ll the ball of radius k centered at o, see Figure 2.1 for an example. If the layer depends on a

different reference point x (such as the middle point of a tile), we will write Lk(x).

Figure 2.1: Example of layers L0, L1, L2.

The union is the ball B2(o).

Figure 2.2: Example of “combinatorial balls”

defined via tilings in [12].

Clearly, V = ∪k≥0Lk and Lj ∩ Lk = ∅ if j ̸= k. Let n be fixed and consider first p ≥ 4. We will

distinguish between two types of vertices in each Ln in a recursive way, those which are connected

to vertices from the previous layer Ln−1, denoted by In;p,q (from “internal vertices”) and those

which are not, denote by En;p,q (from “external vertices”), see also the construction in [13]. More

precisely,

• In;p,q := {v ∈ Ln | ∃w ∈ Ln−1 : (v, w) ∈ E};

• En;p,q := Ln \ In;p,q,

so that |In;p,q| + |En;p,q| = |Ln|. See Figure 2.3 for an example. For p = 3 (triangulations) the

situation is special since all vertices in a layer are connected to the previous layer. In this case, we

will define the following subsets for n ≥ 2:

• I ′n;3,q = {v ∈ Ln | ∃w ∈ Ln−1 : (v, w) ∈ E};

• I ′′n;3,q = {v ∈ Ln | ∃w1, w2 ∈ Ln−1 : (v, w1), (v, w2) ∈ E},

see Figure 2.4. In this case, |I ′n;3,q| + 2|I ′′n;3,q| = |Ln|. The first set consists of the 3 points in the

first triangle L0.

We will add the dependence on a reference point x in the definition of the sets In;p,q(x), En;p,q(x),

I ′n;3,q(x) resp. I
′′
n;3,q(x) if x ̸= o.
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Figure 2.3: Example of the sets E0;7,3 and

E1;7,3 in blue and I1;3,7 in green.

Figure 2.4: Example of the sets I ′1;3,7 in blue,

I ′′1;3,7 in green and the set L0 in pink.

Remark 2.3. Note that the “combinatorial balls” Bn constructed in [12] using the word norm on

the Fuchsian group Gp,q are unions of tiles. If we look at the corresponding combinatorial ball

in the dual lattice B′
n of radius n from the origin o defined in [6], then |∂eB′

n| < |∂eBn| and

|∂eB′
n|/|B′

n| > |∂eBn|/|Bn|. This is the reason why their combinatorial balls will not realize the

isoperimetric constant (see Remark 4.3 in [6]) and ours will. For an example comparison we refer

to Figures 2.5 vs 2.6.

Figure 2.5: Example of B1(o) in pink and

the green vertices are indicating ∂eB1(o). We

have |∂eB1(o)|/|B1(o)| = 3/5.

Figure 2.6: Example of B1(o) in pink and

the green vertices are indicating ∂eB1(o). We

have |∂eB1(o)|/|B1(o)| = 2.

For any connected set of vertices A, we will define the smallest combinatorial ball containing A

and a largest ball contained in A.

Definition 2.4. Let A ⊂ V be any connected set of vertices (order them lexicographically ⪯), and

set |A| = N . We define BA,max the largest ball contained in A as follows. If the vertices in A do

not form a polygon (or a tile) then set BA,max = ∅. Otherwise, there exist M ≤ N −p layers L1(xi)

in A with middle points x1, . . . , xM . Let

{x,m} := argmax
l∈N

argmax
{x1,...,xM}


l⋃

k=0

Lk(xi) :
l⋃

k=0

Lk(xi) ⊂ A

 .
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Then BA,max is defined as

BA,max(x) :=

m⋃
k=0

Lk(x).

Note that this ball is not uniquely defined. In the case that several sets BA,max(x) can be

constructed in this way we take the ball with the smallest reference point in lexicographic order.

Definition 2.5. Given x as in Definition 2.4, let

M = argmin
l∈N


l⋃

k=0

Lk(x) :
l⋃

k=0

Lk(x) ⊃ A

 .

We define the minimal ball containing A, by

BA,Min(x) =

M⋃
k=0

Lk(x).

An example can be found in Figure 2.7.

Figure 2.7: Example of the set of connected points A, displayed as blue points. There are two tiles

present in A. One is centered at x and one at y with x ⪯ y. The ball BA,max(x) is displayed by the

pink circles and and the layer BA,Min(x) \BA,max(x) by the green circles.

Furthermore we will characterize the vertices v in the layers in BA,Min(x) \BA,max(x) as empty

if v /∈ A and occupied if v ∈ A. A sequence of consecutive empty, resp. occupied, vertices in the

same layer is called a strip.

Finally, for a fixed N ∈ N and connected set A ⊂ V such that |A| = N we will define sets MN

which will turn out to be the set of minimal shapes which have minimal perimeter.

Definition 2.6. Fix N ∈ N and let A be a connected set A ⊂ V such that |A| = N . We call

Ne = (BA,Min(x) \BA,max(x)) ∩Ac, resp. No = (BA,Min(x) \BA,max(x)) ∩A

the set of empty, resp. occupied vertices, in BA,Min(x) \BA,max(x). Define a strip S of length |No|
in some layer LK for K large enough. Denote by omax the maximal possible number of vertices

v ∈ S which are also in IK;p,q for p ≥ 4, resp. also in I ′′K;3,q for p = 3. Moreover let se denote the

number of empty strips in the layers of BA,Min(x) \BA,max(x). Then A ∈ MN if it satisfies one of

the following conditions:
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(C1) se = 0 and BA,Min(x) = BA,max(x).

(C2) se ≥ 1 and the set No contains precisely omax+(se− 1) vertices v such that v ∈
⋃M

r=m+1 Ir;p,q

resp. v ∈
⋃M

r=m+1 I
′′
r;3,q.

We construct some examples of sets in M17 in Figures 2.8 and 2.9.

Figure 2.8: Example of A ∈ M17 with |No| =
10, |Ne| = 18. We have se = 1, m = 3, and

three vertices are in I1;7,3.

Figure 2.9: Example of A ∈ M17 with |No| =
10, |Ne| = 18. We have se = 2, m = 3, and

3 + (2− 1) vertices are in I1;7,3.

3 Results

In this section, we present the main results of this paper. The first result concerns characterizing

the sets of minimal perimeter for a fixed volume N ∈ N for any hyperbolic lattice Lp,q.

Theorem 3.1 (Minimal perimeter). Given N ∈ N, let SN = {A ⊂ V : |A| = N} be the set of all

subsets of vertices with size N . Then for any A ∈ SN \MN :

|∂eA| > |∂eM |,

where M ∈ MN . Moreover, given a finite graph G with vertex set BN (o), the Cheeger and geometric

Cheeger constants are equal to

iN (G) =
|∂eM |
N

and igN (G) =
|∂eM |
qN

,

where iN , igN are defined in Definition 2.1.

In the following theorem we will show that our minimal shapes in MN realize the Cheeger

constant (or isoperimetric constant) computed in [6, Theorem 4.1], when N → ∞.

Theorem 3.2 (Realizing the Cheeger constant). For some N ∈ N, let M ∈ MN and the Cheeger

constant be equal to

ie(Lp,q) = (q − 2)

√
1− 4

(p− 2)(q − 2)
.

Then

ie(Lp,q) = lim
|M |→∞

|∂eM |
|M |

. (3.1)
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Proposition 3.3. (Euler characteristic) Let Gp,q be the Fuchsian group defined in Equation 2.4

associated to Lp,q and {p, q} such that 1
p + 1

q < 1
2 . Then the Euler characteristic is equal to

X (Gpq) =
2q + 2p− pq

2p
.

From the proof of Proposition 3.3 we have the following interesting corollary which provides a

formula for the number of connected sets of size n.

Corollary 3.4. Let gp(z) =
∑∞

n=0 a
(p)
n zn be the generating function for the number of connected

components of size n depending on p. Then, we have that

a(p)n =

cp,q(C+λ
n
+ + C−λ

n
−) if p ≥ 4

3 + C̃+λ
n−1
+ + C̃−λ

n−1
− if p = 3

where cp,q =
p

2
√

(p−2)(p(q−2)−2q)
, the other constants C±, C̃± are equal to

C± = (
√

(p− 2)(p(q − 2)− 2q)∓ 2
√

q − 2± p
√
q − 2) (3.2)

C̃± =
3

2

(
q − 3± (q − 5)(q − 2)√

(q − 6)(q − 2)

)
, (3.3)

and λ± are the eigenvalues equal to 1
2

(
2 + p(q − 2)− 2q ±

√
(p− 2)(q − 2)(q(p− 2)− 2p)

)
.

We postpone the proofs of the previous results to the next Section 4.

4 Proofs

In this Section we will prove our main results.

4.1 Proof of Theorem 3.1

In order to prove Theorem 3.1 we need the following lemma. In this lemma we show that sets A

which are not connected cannot be in MN .

Lemma 4.1. Let A ⊂ V be a non-connected set of vertices, and |A| = N . Then there exists a set

B ⊂ V such that |B| = |A| and |∂eB| < |∂eA|.

Proof of Lemma 4.1. Suppose that A is composed by m connected components A1, ..., Am with

m > 1. W.l.o.g. let A2 be the closest (in graph distance) connected set of vertices to A1 in the

same layer. Let B be set of vertices composed of m − 1 connected components B1, ..., Bm−1 such

that Bi = Ai for i = 3, ...,m− 1 and B1 = A1∪H(A2) is a connected set of vertices where H(A2) is

the homomorphism translating vertices from A2 towards A1. Thus, |∂eB| ≤ |∂eA| − 1 < |∂eA| and
we conclude.

In the following, we will prove Theorem 3.1. Given any set D ∈ SN \MN we will construct a

set A out of D by elementary operations such that |∂eD| > |∂eA|. By Lemma 4.1 we can exclude

all sets D which are not connected. Given a connected set D, we construct the balls BD,Min(x)
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resp. BD,max(x) containing resp. contained in D, see also Definitions 2.4, resp. 2.5. Recall that we

can write any such D as

D = BD,max ∪No.

To ease notation we will assume w.l.o.g. that x = o. The strategy will be to show that any

arrangement of occupied/empty strips of vertices in the annulus BD,Min\BD,max which is satisfying

conditions (C1) or (C2) in Definition 2.6, has larger perimeter. We will develop the proof for the

case p ≥ 4 and leave p = 3 for the reader since it is a simple adaptation replacing the set I by I ′′.

In the following argument we will construct a set of smaller perimeter than D depending on

the number of empty strips se in the annulus. Recall that if se = 0, then D ∈ MN which is a

contradiction. We will distinguish between three cases:

(I) se = 1 and the empty strip is in the last layer, Se ∈ LM .

(II) se = 1 and the empty strip is not in the last layer, Se ∈ Lk where k < M .

(III) Several empty strips, se > 1.

CASE (I) Note that in this case BD,Min = BD,max ∪ LM . Call So the occupied strip in LM , in

this case we have that So = No. Then we know that its vertices belong either to IM ;p,q resp. to

EM ;p,q. In fact, we can decompose a general strip So, as

So = (So ∩ IM ;p,q) ∪ (So ∩ EM ;p,q) := So(I) ∪ So(E), (4.1)

and |So(I)| < omax by assumption, see also Figure 4.1 for an example. If |So(I)| = omax, then

D ∈ MN which is a contradiction. Recall that omax was the maximal number of vertices in IM ;p,q

an occupied strip of size |No| can have. By a direct computation, we obtain

|∂eBD,max| ≤ |∂eD|+ (|So(E)|+ 2)(4− q) + (|So(I)| − 2)(6− q). (4.2)

We will construct A as follows, an example can be found in Figure 4.2. Let S′
o denote an occupied

strip in layer LM such that |S′
o| = |So| and |S′

o(I)| = omax. Since |So(I)| < omax, we then necessarily

have that |So(E)| > |S′
o(E)| and

omax = |So(I)|+ |So(E)| − |S′
o(E)|. (4.3)

Set now A := BD,max ∪ S′
o. Note that the construction of the set A is not unique. Therefore,

|∂eA| = |∂eBD,max|+ (|S′
o(E)|+ 2)(q − 4) + (m− 2)(q − 6)

(4.2)

≤ |∂eD|+ (|S′
o(E)|+ 2)|(q − 4)− (|So(E)|+ 2)(q − 4) + (|m| − 2)(q − 6)− (|So(I)| − 2)(q − 6)

= |∂eD| − (|So(E)| − |S′
o(E)|)(q − 4) + (omax − |So(I)|)(q − 6)

(4.3)
= |∂eD| − 2 (omax − |So(I)|)︸ ︷︷ ︸

>0 by assumption

< |∂eD|. (4.4)
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Figure 4.1: Example of D ∈ S30 with one

empty and one occupied strip in the last

layer, |So(I)| = 5.

Figure 4.2: Example of A constructed from

D by defining a new strip S′ such that

|S′
o(I)| = omax = 6.

CASE (II) In this case we have one empty strip Se lying in Lk for some k < M . If q ≥ 4 we can

proceed as follows. First note that for a set A′ := D ∪ (Se \ {v}), where we added a vertex to the

empty strip, the perimeter satisfies

|∂eA′| ≤ |∂eD|+ (2− q). (4.5)

Construct A by removing an occupied vertex w from the last layer in EM ;p,q, i.e. A = A′ ∪ {w}.
Then |A| = |D| and

|∂eA| = |∂eA′|+ (4− q)

and using Equation (4.5) and q ≥ 4 we obtain

|∂eA| ≤ |∂eD|+ 6− 2q < |∂eD|.

However, if q = 3, moving one vertex will not be enough to get a set with strictly smaller perimeter,

we instead have to fill the whole empty strip with vertices from the last layer. Note that

|∂eBD,Min| = |∂eD| − |Se| − 3.

Call S′
o an occupied strip from LM with cardinality |S′

o| = |Se| and order its vertices, such that the

first vertex w ∈ S′
o ∩ EM ;p,q. Fill the empty strip Se. Denote this new set by A, then

|∂eA| = |∂eA′|+ |S′
o(I)| − |S′

o(E)|+ 2

and therefore |∂eA| = |∂eD| − 2|S′
o(E)| − 1 < |∂eD|.

CASE (III) For the general case we have se > 1 empty strips in the annulus BD,Min \ BD,max,

denote them by Se,1, . . . , Se,se where se. We will distinguish q ≥ 4 and q = 3. For examples, see

Figures 4.3, resp. 4.4. We will first assume that there exists a strip Se,j which is in some layer Lk

with k < M such that the vertices in the layers Lk−1 ∪ Lk+1 connected with Se,j are occupied.

Let us first consider q ≥ 4. Consider any strip Se,j ∋ v. If we fill the empty vertex v, then

|∂eD ∪ {v}| ≤ |∂eD|+ (2− q), (4.6)
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Figure 4.3: Example for a set D (blue sites)

for p = 4 and q ≥ 4. We highlighted the

empty sites by pink vertices. We have two

empty strips Se,1, Se,2 in L1 and two empty

strips Se,3, Se,4 in L2.

Figure 4.4: Example for a set D (blue sites)

for p = 7 and q = 3. We highlighted the

empty sites by pink vertices. We have two

empty strips Se,1, Se,2 in L1 and two empty

strips Se,3, Se,4 in L2.

see also Figure 4.3. If there exists a vertex w ∈ EM ;p,q ∩No, then define A := (D ∪ {v}) \ {w}. The
perimeter satisfies |∂eA| = |∂eD ∪ {v}|+ (4− q).

By Equation (4.6), we obtain the claim since |∂eA| ≤ |∂eD| + 6 − 2q < |∂eD|. Otherwise if

all occupied vertices w ∈ LM ∩ No are in IM ;p,q, we there exists a vertex in w′ ∈ EM−1;p,q ∩ No.

Analogously we obtain for A := (D ∪ {v}) \ {w′} that the perimeter can be bounded by

|∂eA| ≤ |∂eD|+ 4− 2q < |∂eD|.

In the remaining argument let us assume that q = 3. We have to distinguish between the case

that in LM ∩ No there are enough vertices to fill Se,j or not. Let us first consider the case that

|LM ∩ No| ≥ |Se,j |. Let A′ = D ∪ Se,j , then the perimeter is equal to |∂eA′| = |∂eD| − |Se,j | − 3. If

the whole last layer is occupied, i.e. when LM ∩ No = LM , then define (and order) a strip in the

last layer S′
o = {v1, . . . , vK} for K = |Se,j | such that v1 ∈ EM ;p,3. Set A = (D ∪ Se,j) \ S′

o and by a

direct computation we get that |∂eA| = |∂eD ∪ Se,j |+ |S′
o(I)| − |S′

o(E)|+ 2 and therefore

|∂eA| ≤ |∂eD| − 2|S′
o(E)| − 1 < |∂eD|.

Otherwise if there are empty vertices in LM , then define the strip S′
o ⊂ LM with v1 next to an

empty vertex w ∈ LM ∩Ne. Then we obtain for the perimeter, setting A = (D ∪ Se,j) \ S′
o, then

|∂eA| ≤ |∂eD ∪ Se,j |+ |S′
o(I)| − |S′

o(E)| ≤ |∂eD| − 2|S′
o(E)| − 3 < |∂eD|.

For examples of the sets D, resp. A, see Figures 4.5 resp. 4.6.

Let us now focus on the case that |LM ∩No| < |Se,j |, hence there are less occupied vertices than

|Se,j |. Call h := |LM ∩No| and fill h vertices {v1, . . . , vh} in Se,j . Then

|∂eD ∪ {v1, . . . , vh}| = |∂eD| − h.

Then we define A from the previous set by removing all vertices from the last layer, i.e. A :=

(D ∪ {v1, . . . , vh) \ (LM ∩No). Then analogously

|∂eA| ≤ |∂eD| − 2|No ∩ EM ;p,3| − 3 < |∂eD|.

12



Figure 4.5: Example of a set D. We high-

lighted an empty strip S and a strip S′

with the same cardinality with first vertex

in E2;7,3.

Figure 4.6: Example of a constructed set A

obtained from the set D in Figure 4.5. We

filled the empty strip S with vertices from S′

with the same cardinality.

Assume now that a strip Se,j such that the occupied vertices in the layers Lk−1 ∪ Lk+1 are

connected with Se,j , does not exist. Recall that we have se empty (resp. occupied) strips in the

annulus BD,Min \ BD,max. Denote by So,1, . . . , So,se the occupied strips in layers Lj where j ∈
{m+1, . . . ,M}. Recall that

⋃se
i=1 So,i = No. Then the number of occupied vertices in

⋃M
j=m+1 Ij;p,3

satisfies

t :=

∣∣∣∣∣∣∣No ∩

 M⋃
j=m+1

Ij;p,3


∣∣∣∣∣∣∣ < omax + se − 1,

since by assumption, D /∈ MN . Then for D \ No = BD,max we have that

|∂eBD,max| ≤ |∂eD|+
se∑
j=1

(
|So,j(I)| − 1

)
−

se∑
j=1

(
|So,j(E)|+ 1

)
= |∂eD|+ (t− se)− (|No| − t+ se). (4.7)

If |No| ≤ |Lm+1|, we define A := BD,max ∪ S′ where |S′| = |No| and such that S′ contains omax

vertices in Im+1;p,3. Otherwise there exists k ∈ {m+ 1, . . . ,M − 1} such that

k∑
j=m+1

|Lj | < |No| ≤
k+1∑

j=m+1

|Lj |.

In this case we define A by A := BD,max∪
⋃k

j=1 Lj∪S′, where S′ is a strip of length |No|−
∑k

j=m+1 |Lj |
and such that S′ contains the maximal number of vertices in Ik+1;p,3. For an example see Figure

4.7. Then using Equation (4.7)

|∂eA| ≤ |∂eD|+ (t− se − omax + 1) < |∂eD| (4.8)

since t < omax + se − 1.

13



Figure 4.7: Example of a set D with two stripes of red occupied vertices, So,1, So,2 in the last layer

and one empty stripe of length 18 in the previous layer which will be occupied by |So,1 ∪ So,2| = 11

many vertices.

4.2 Proof of Theorem 3.2

Remark that for a fixed N ∈ N and let Q ∈ SN , M ∈ MN . By Theorem 3.1 we have that

|∂eQ|
|Q|

≥ |∂eM |
|M |

≥ inf

{
|∂eA|
|A|

: 0 < |A| < ∞
}
.

On the other hand by Theorem 4.1 in [6] we have that

ie(Lp,q) = inf

{
|∂eA|
|A|

: 0 < |A| < ∞
}

= (q − 2)

√
1− 4

(p− 2)(q − 2)
.

Thus, it follows trivially that

lim
N→∞

|∂eM |
|M |

≥ ie(Lp,q). (4.9)

The claim of the result will follow from Lemmas 4.2 and 4.3 which we will prove below.

Lemma 4.2. We have that

lim
n→∞

|∂eBn(o)|
|Bn(o)|

= ie(Lp,q).

Lemma 4.3. For M ∈ MN we have that

lim
|M |→∞

|∂eM |
|M |

≤ ie(Lp,q). (4.10)

4.2.1 Proof of Lemma 4.2

Observe that the perimeter of a ball of radius n is equal to (depending on p ≥ 4 resp. p = 3)

|∂eBn(o)| = |In+1;p,q|, resp. |∂eBn(o)| = 2|I ′′n+1;3,q|+ |I ′n+1;3,q|,
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so that the ratio becomes

|∂eBn(o)|
|Bn(o)|

=



|In+1;p,q |∑n
k=0(|Ik;p,q |+|Ek;p,q |)

if p ≥ 4,

2|I′′n+1;3,q |+|I′n;p,q |

3+
∑n

k=1

(
|I′k;3,q |+|I′′k;3,q |

) if p = 3.

From [13] we have the following recursion relation for In;p,q, En;p,q, see also [13, Equations (2.14)

and (2.16)], for p ≥ 4 and n ≥ 0 (
In+1;p,q

En+1;p,q

)
= T1

(
In;p,q
En;p,q

)
(4.11)

where (I0;p,q, E0;p,q) = (0, p) and

T1 =

(
q − 3 q − 2

8− 3p− 3q + pq 5− 2p− 3q + pq

)
(4.12)

resp. for p = 3, n ≥ 1

(
In+1;3,q

En+1;3,q

)
= T2

(
In;3,q
En;3,q

)
(4.13)

where (I0;3,q, E0;3,q) = (3, 3(q − 4)) and

T2 =

(
1 1

q − 6 q − 5

)
. (4.14)

We will distinguish between p ≥ 4 and p = 3. Let us consider the first case.

CASE (I) Due to the recursion relation, we have that

|In+1;p,q| = (1, 0)Tn+1
1

(
0

p

)
.

Diagonalizing T1 we obtain that

Tn
1 = (e+, e−)

(
λn
+ 0

0 λn
−

)
(e+, e−)

−1,

where the eigenvalues are equal to

λ± =
1

2

(
2 + p(q − 2)− 2q ±

√
(p− 2)(q − 2)(q(p− 2)− 2p)

)
=

(
1

2
(p− 2)(q − 2)− 1

)1±

√
1− 4

((p− 2)(q − 2)− 2)2

 , (4.15)
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and the corresponding eigenvectors

e+ =

 2

p− 4 +

√
(p−2)(p(q−2)−2q)√

q−2

, 1


T

, resp. e− =

 2

p− 4−
√

(p−2)(p(q−2)−2q)√
q−2

, 1


T

.

Therefore,

|In+1;p,q| =
p
√
q − 2

(
λn+1
+ − λn+1

−

)
√
(p− 2)(p(q − 2)− 2q)

(4.16)

resp.

n∑
k=0

(
|Ik;p,q|+ |Ek;p,q|

)
=

n∑
k=0

(1, 1)T k
1

(
0

p

)

=
p

2
√
(p− 2)(p(q − 2)− 2q)

n∑
k=0

(
a−λ

k
− + a+λ

k
+

)
with

a± = (
√

(p− 2)(p(q − 2)− 2q)∓ 2
√

q − 2± p
√
q − 2)

= (p− 2)
√
q − 2

±1 +

√
1− 4

(p− 2)(q − 2)

 . (4.17)

Then we can conclude that

lim
n→∞

|∂e(Bn(o)|
|Bn(o)|

= lim
n→∞

2
√

q − 2

(
λn+1
+ − λn+1

−

)
∑n

k=0

(
a−λk

− + a+λk
+

) = lim
n→∞

2
√
q − 2

(
λn+1
+ − λn+1

−

)
a−

1−λn+1
−

1−λ−
+ a+

1−λn+1
+

1−λ+

= lim
n→∞

2
√
q − 2

1−
(
λ−
λ+

)n+1

a−
1−λ−

1−λn+1
−

λn+1
+

+ a+
1−λ+

1−λn+1
+

λn+1
+

= 2
√
q − 2

λ+ − 1

a+
(4.18)

since
(
λ−
λ+

)n
→ 0 for n → ∞. Moreover, by a direct computation we can compute that

ie(Lp,q) = 2
√
q − 2

λ+ − 1

a+
,

which was defined in Equation (3.1).

CASE (II) We diagonalize T2 by computing its eigenvalues reps. eigenvectors:

λ± =
1

2

(
q − 4±

√
(q − 6)(q − 2)

)
(4.19)

resp.

e+ =

(
6− q +

√
12− 8q + q2

2(q − 6)
, 1

)T

, resp. e− =

(
6− q −

√
12− 8q + q2

2(q − 6)
, 1

)T

. (4.20)
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Analogously to before we write for the fraction

|∂eBn(o)|
|Bn(o)|

=

2(1, 0)Tn
2

(
3

3(q − 4)

)
+ (0, 1)Tn

2

(
3

3(q − 4)

)

3 +
∑n−1

k=0(1, 1)T
k
2

(
3

3(q − 4)

) (4.21)

which reduces to

|I ′′n+1;3,q| =
3

((√
(q − 6)(q − 2)− (q − 2)

)
λn
− +

(√
(q − 6)(q − 2) + q − 2

)
λn
+

)
2
√

(q − 6)(q − 2)
,

and

2|I ′′n+1;3,q|+ |I ′n+1;3,q| =
3(q − 2)

((
4− q +

√
(q − 6)(q − 2)

)
λn
− +

(
q − 4 +

√
(q − 6)(q − 2)

)
λn
+

)
2
√
(q − 6)(q − 2)

resp.

|Bn(o)| = 3 +
n−1∑
k=0

(
a+λ

k
+ + a−λ

k
−

)
= 3 + a+

1− λn
+

1− λ+
+ a−

1− λn
−

1− λ−
, (4.22)

where

a± =
3

2

(
q − 3± (q − 5)(q − 2)√

(q − 6)(q − 2)

)
.

By a direct computation, we obtain the claim

lim
n→∞

|∂eBn(o)|
|Bn(o)|

=
3

2

q − 2√
(q − 6)(q − 2)

(
q − 4 +

√
(q − 6)(q − 2)

) λ+ − 1

a+

= 3

√
q − 2

q − 6

λ+(λ+ − 1)

a+
= ie(L3,q) (4.23)

since
(
λ−
λ+

)n
→ 0 for n → ∞.

4.2.2 Proof of Lemma 4.3

In the following let us give an exact formula for the perimeter of M . If N is such that No ̸= ∅, i.e.
M ̸≡ Bn(o), then

|∂eM | =

|In+1;p,q|+ (q − 4)(|No ∩ In+1;p,q| − 1) + (q − 2)(|No ∩ En+1;p,q|+ 1) if p ≥ 4,

2|I ′′n+1;3,q|+ |I ′n+1;3,q|+ (q − 6)(|No ∩ I ′′n+1;3,q| − 1) + (q − 4)(|No ∩ I ′n+1;3,q|+ 1) if p = 3.

(4.24)

For an example see Figure 4.8.

We distinguish two cases: Case (I) p ≥ 4, and Case (II) p = 3.
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Figure 4.8: Example of a set M satisfying the relation (4.24) for p = 4, q = 5. We have that

|No| = 7, |No∩I2;4,5| = 5, |No∩E2;4,5| = 2, |I2;4,5| = 48 and |∂eM | = 61 = 48+1 · (5−1)+3 · (2+1)

CASE (I) We note that |No ∩ In+1;p,q| ≥ |In+1;p,q |
|Ln+1| |No|, see Remark 4.4 for details. By using

Equation (4.24), we can bound the ratio by

|∂eM |
|M |

=
|In+1;p,q|+ (q − 4)(|No ∩ In+1;p,q| − 1) + (q − 2)(|No ∩ En+1;p,q|+ 1)∣∣∣⋃n

j=0 Lj

∣∣∣+ |No|

=
|In+1;p,q|+ (q − 2)|No| − 2|No ∩ In+1;p,q|+ 2∣∣∣⋃n

j=0 Lj

∣∣∣+ |No|

≤
|In+1;p,q|+

(
q − 2− 2 |In+1|

|Ln+1|

)
|No|+ 2∣∣∣⋃n

j=0 Lj

∣∣∣+ |No|
. (4.25)

Since |
⋃n

j=0 Lj | > 0 and
(
q − 2− 2 |In+1|

|Ln+1|

)
> 1, see Remark 4.5 for details, we have an increasing

function of |No| < |Ln+1| and we obtain

|∂eM |
|M |

<
|In+1;p,q|+

(
q − 2− 2 |In+1|

|Ln+1|

)
|Ln+1|+ 2∣∣∣⋃n

j=0 Lj

∣∣∣+ |Ln+1|

=
|In+1;p,q|+ (q − 2) (|In+1;p,q|+ |En+1;p,q|)− 2|In+1;p,q|+ 2∣∣∣⋃n+1

j=0 Lj

∣∣∣
=

|In+2;p,q |︷ ︸︸ ︷
(q − 3)|In+1;p,q|+ (q − 2)|En+1;p,q|+2∣∣∣⋃n+1

j=0 Lj

∣∣∣
=

|In+2;p,q|+ 2∣∣∣⋃n+1
j=0 Lj

∣∣∣ → i(Lp,q). (4.26)
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CASE (II) First, we note that if p = 3 then q ≥ 7 by the assumption 1/p+ 1/q < 1/2. Moreover,

we observe that |No ∩ I ′′n+1;p,q| ≥
|I′′n+1;p,q |
|Ln+1| |No|, thus

|∂eM |
|M |

=
2|I ′′n+1;p,q|+ |I ′n+1;p,q|+ (q − 6)(|No ∩ I ′′n+1;p,q| − 1) + (q − 4)(|No ∩ I ′n+1;p,q|+ 1)

|
⋃n

j=0 Lj |+ |No|

=
2|I ′′n+1;p,q|+ |I ′n+1;p,q|+ (q − 4)|No| − 2|No ∩ I ′′n+1;p,q|+ 2

|
⋃n

j=0 Lj |+ |No|

≤
2|I ′′n+1;p,q|+ |I ′n+1;p,q|+

(
q − 4− 2

|I′′n+1;p,q |
|Ln+1|

)
|No|+ 2

|
⋃n

j=0 Lj |+ |No|
. (4.27)

Since |
⋃n

j=0 Lj | > 0 and

(
q − 4− 2

|I′′n+1;p,q |
|Ln+1|

)
> 1, see Remark 4.5 for details, we again have an

increasing function of |No| < |Ln+1| and we obtain

|∂eM |
|M |

<
|I ′n+1;p,q|+ (q − 4)|Ln+1|+ 2

|
⋃n+1

j=0 Lj |

=
(q − 3)|I ′n+1;p,q|+ (q − 4)|I ′′n+1;p,q|+ 2

|
⋃n+1

j=0 Lj |

=

I′n+2;p,q︷ ︸︸ ︷
(q − 5)|I ′n+1;p,q|+ (q − 6)|I ′′n+1;p,q|+

2I′′n+2;p,q︷ ︸︸ ︷
2|I ′n+1;p,q|+ 2|I ′′n+1;p,q|+2

|
⋃n+1

j=0 Lj |

→ i(Lp,q) (4.28)

Remark 4.4. By Definition 2.6, we recall that |No| contains the maximal number of vertices in

In+1;p,q, i.e., |No ∩ In+1;p,q| is maximal. For j = 1, ..., |Ln+1|, we define Sj the ordered strips Ln+1

of length |Sj | = |No|. Thus, we obtain

|In+1;p,q| =
|Ln+1|∑
j=1

|Sj ∩ In+1;p,q|
|Sj |

≤ |Ln+1| max
j∈{1,...,|Ln+1|}

|Sj ∩ In+1;p,q|
|Sj |

= |Ln+1|
|No ∩ In+1;p,q|

|No|

(4.29)

Remark 4.5. We prove that q− 2− 2
|In+1;p,q |
|Ln+1| > 1 and q− 4− 2

|I′′n+1;p,q |
|Ln+1| > 1. By definition of In+1;p,q

and recall that the eigenvalues λ± were defined in Equation (4.19) and the constants a± in Equation

(4.17),

q − 2− 2
|In+1;p,q|
|Ln+1|

= q − 2− 4

√
q − 2(λn+1

+ − λn+1
− )

a+λ
n+1
+ + a−λ

n+1
−

≥ q − 2− 4

√
q − 2

a+

= q − 2− 4

(p− 2)

(
1 +

√
1− 4

(p−2)(q−2)

) > 1 (4.30)

where we used that the first function is decreasing in n, the second function is increasing in p and
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q with 1/p+ 1/q < 1/2. Moreover,

g(q, n) := q − 4− 2
|I ′′n+1;p,q|
|Ln+1|

= q − 4−
3

((
1−

√
q−2
q−6

)
λn+1
− +

(
1 +

√
q−2
q−6

)
λn+1
+

)
a+λ

n+1
+ + a−λ

n+1
−

≥ q − 4−
3

((
1−

√
q−2
q−6

)
λ− +

(
1 +

√
q−2
q−6

)
λ+

)
a+λ+ + a−λ−

≥ g(7, 1) > 1 (4.31)

where we used that the first function is increasing in n and the second function is increasing in q,

where q ≥ 7.

4.3 Proof of Proposition 3.3

We know that the tile T := L0 is a generating set for Gp,q. The word norm induced by T in Gp,q

is the minimal length g of a word respectively to the Fuchsian group in T . Let g(z) be the growth

series,

g(z) = a0 + a1z + a2z
2 + . . .

where an is the number of elements in Gp,q with word norm exactly n. Recall that we are considering

our hyperbolic lattice starting from a tile and not from a vertex. The coefficients an of the growth

series will depend on p, we have that for n ≥ 0

a(p)n = (1, 1)Tn
1

(
0

p

)
for p ≥ 4 and for p = 3 and n ≥ 1

a(3)n = 3 + (1, 1)Tn−1
2

(
3

3(q − 4)

)
,

where the matrices T1, T2 were defined in Equations (4.12) resp. (4.14). In the first case we write

g(z) = p+ (1, 1)

 ∞∑
n=1

zn−1Tn−1
1

 z v (4.32)

where the vector v is equal to v = T1

(
0
p

)
.

We note that the sum in this formal function g is the Maclaurin series of the following rational

function

f1(z) = p+ (1, 1)(Id− zT1)
−1z v,

where Id is the 2× 2 identity matrix. By a direct computation, we obtain that

f1(z) =
p(1 + z)

z2 + (2q + 2p− pq − 2)z + 1
. (4.33)

By applying [12, Theorem 1], we find that the Euler characteristic is equal to

X (Gpq) =
1

f1(1)
=

2q + 2p− pq

2p
. (4.34)
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In the following, we compute the Euler characteristic for p = 3. The growth series h(z) is equal

to

h(z) = 3 +

∞∑
n=0

(1, 1)(T2z)
n

(
3

3(q − 4)

)
= 3(q − 2) + (1, 1)

 ∞∑
n=1

zn−1Tn−1
2

 z u (4.35)

where the vector u is equal to u = T2

(
3

3(q−4)

)
. Then

f2(z) = 3(q − 2) + (1, 1)(Id− zT2)
−1z u,

or equivalently

f2(z) = 3 +
3(q − 3− z)

1 + z(4− q + z)
. (4.36)

We apply again [12, Theorem 1] and obtain that

X (G3,q) =
6− q

6
(4.37)

which coincides with the Euler characteristic we have found before in Equation (4.34) setting p = 3.

Funding

M.D’A. is supported by the ERC Consolidator Grant SuperGRandMA (Grant No. 101087572). V.J.

and W.M.R. are funded by the Vidi grant VI.Vidi.213.112 from the Dutch Research Council.

Acknowledgments

The authors would like to thank Annika Brockhaus and the authors of the Python code [14] for

helping producing the pictures. V.J. thanks GNAMPA. M.D’A. is grateful to the Department of

Mathematics of the University of Utrecht for excellent working conditions in the occasion of an

invitation (November 2024), during which this work has been partly done. The authors also thank

David Adame-Carillo for the interesting discussion on the partitioning of the strips with maximum

cardinality.

References

[1] M. Aizenman, Translation invariance and instability of phase coexistence in the two dimen-

sional Ising system, Communications in Mathematical Physics, 73 (1980), pp. 83–94.

[2] I. Boettcher, A. V. Gorshkov, A. J. Kollár, J. Maciejko, S. Rayan, and

R. Thomale, Crystallography of hyperbolic lattices, Physical Review. B, 105 (2022).

[3] A. Chen, H. Brand, T. Helbig, T. Hofmann, S. Imhof, A. Fritzsche, T. Kießling,

A. Stegmaier, L. K. Upreti, T. Neupert, et al., Hyperbolic matter in electrical circuits

with tunable complex phases, Nature Communications, 14 (2023), p. 622.

[4] M. D’Achille, L. Coquille, and A. Le Ny, Extremal Ising Gibbs States on Hyperbolic

Lattices, (2024+). To appear.

21



[5] G. R. Grimmett and C. M. Newman, Percolation in ∞ + 1 dimensions, Claremond Press,

Oxford, 1990, pp. 219–240.
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