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Abstract:

We consider the ferromagnetic n.n. Ising model on Cayley trees submitted to a modified
majority rule transformation with overlapping cells already known to lead to non-Gibbsian
measures. We describe the renormalized measures within the generalized Gibbs framework
and prove that they are almost Gibbs at any temperature.
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1 Introduction

In mathematical statistical mechanics, Gibbs measures have been rigorously designed to rep-
resent equilibrium states and to model phase transitions, following the pioneering works of
Dobrushin, Lanford and Ruelle who described them as an extension of Markov chains, both
dynamically and spatially, in terms of the specification of their conditional probabilities w.r.t.
the outside of finite sets [9, 34]. This DLR approach has been fully put on rigorous grounds
in the eighties by Georgii [21]. In the mean time, some pathologies of the formal definition of
Gibbs measures arose within numerical studies of critical phenomena [22, 30], identified after-
wards to be a manifestation of possible non-Gibbsianness of the renormalized measures [11].
This non-Gibbsianness has been since then mainly coined by the exhibition of bad configura-
tions, which are points of essential discontinuity of the renormalized measures. This led to a
Dobrushin program of restoration of Gibbsianness, launched by Dobrushin himself in a talk in
Renkum in 1995 [10]. Within this program, two main restoration notions have been proposed,
weak Gibbsianness and almost Gibbsianness, the latter being stronger than the former1. On
d-dimensional integer lattices Zd, most initial efforts of restoration have been adressed to the
decimation transformation, leading to an almost Gibbsian description at any temperature in
a series of papers [11, 15, 36], while positive results concerning preservation of Gibbsianness
near the critical point and in uniqueness regions have been proposed in [2, 27, 31, 41].

As it is usually difficult to evaluate the measure of the set of discontinuity points (so-called
bad configurations), the approach leading to almost Gibbsianness on Zd heavily relies on a
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1See [40] or [32], where one can learn that the weakly Gibbsian representation is indeed too weak due to a
possible failure of the variational principle in a weak but non almost Gibbsian example.
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specification-dependent variational principle (zero relative entropy characterization) which is
known to fail on trees [8, 17]. Due to this difficulty, while considering trees as lattices, most
efforts have been addressed to the detection of non-Gibbsian measures, by renormalization
[25] or via stochastic evolution (van Enter et al., see e.g. [12]), with the notable exception
of the failure of almost Gibbsianness for the random-cluster measures proved in [24]. While
decimation is known to preserve Gibbs property on trees, we focus here on a majority rule
transformation already known from [35] to cause failure of Gibbsianness, and prove that the
renormalized measure is almost Gibbsian at any temperature (Theorem 4.1). Our strategy
is elementary in that it involves transfer matrices, Markov chains, dependent percolation or
moment estimates, and profits of the recursivity inherent to treatments on trees.

2 Gibbsian and non-Gibbsian Measures on Trees

2.1 Gibbs measures

In this paper we consider Ising spins with single-spin state-space E = {−1, 1} equipped with
the σ-algebra E = P(E) and the a priori couting measure ρ0 = 1

2δ−1 + 1
2δ+1, where δi is

the Dirac measure on i ∈ E. For a given lattice S, the configuration space is the product
measurable space Ω = ES equipped with the product σ-algebra F = E⊗S and the product
measure ρ = ρ⊗S0 . As usual in statistical mechanics, we consider macroscopic states to be
probability measures on Ω, whose set is denoted byM+

1 (Ω). We also denote by S the set of
all the finite subsets of S and for V ∈ S, we consider the finite-volume configuration space
ΩV = EV , equipped with the product measurable structure (FV , ρV ), and denote ωV the
canonical projection of ω ∈ Ω on ΩV . Similarly, for any V, V ′ ⊂ S such that V ∩ V ′ 6= ∅, for
all ω, σ ∈ Ω, we denote by ωV σV ′ the element of ΩV ∪V ′ which agrees with ω in V and with σ
in V ′. For any V ∈ S, |V | denotes the cardinality of V .

In this work, the lattices we consider are Cayley trees S = T k, for integers k > 0, that is,
(k + 1)-regular infinite trees (see [47] for further details). We focus here on the case k = 2.

Ising Potential: we consider nearest-neighbor (n.n.) potentials Ψ = (ΨA)A∈S s.t.,

∀ω ∈ Ω,ΨA(ω) =


−J(i, j) ωiωj if A = {i, j}
−h(i) ωi if A = {i}
0 otherwise.

(1)

Here, J : T k × T k −→ R is the coupling function, assumed to be non-negative in this fer-
romagnetic set-up, and h : T k −→ R is often called an external magnetic field. The Ising
potential (1) is a prototype of uniform absolutely convergent “potentials” used to define Gibbs
measures in this mathematical framework [21]:

Definition 2.1. [UAC potential] A potential Φ =
(
ΦA

)
A∈S is a family of local functions

ΦA that are FA-measurable. It is said to be uniformly absolutely convergent (UAC) iff∑
A3i,A∈S

sup
ω∈Ω
|ΦA(ω)| < +∞, ∀i ∈ S.

For such a UAC potential Φ, and for all configurations σ ∈ Ω, we introduce the finite-
volume Hamiltonian with boundary condition ω ∈ Ω, defined by

HΦ
V (σ | ω) :=

∑
A∈S,A∩V 6=∅

ΦA(σV ωV c). (2)
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In the particular case of free boundary conditions at finite-volume V , one writes

HΦ,f
V (σ) :=

∑
A⊂V

ΦA(σV ).

Associated to (2), there are, at temperature β−1 > 0, Boltzmann–Gibbs weights e−βHΦ
V (σ|ω)

and corresponding partition functions at finite-volume V and boundary condition ω,

ZβΦ
V (ω) =

∫
ΩV

e−βH
Φ
V (σ|ω)ρV (dσV ), (3)

where ρV := ρ⊗V0 is the a priori product measure at finite-volume V .

Definition 2.2. [Gibbs specifications] For an UAC potential Φ, the set of probability
kernels γβΦ = (γβΦ

V )V ∈S , defined for all V ∈ S and σ, ω ∈ Ω, as

γβΦ
V (σ | ω) :=

1

ZβΦ
V (ω)

e−βH
Φ
V (σ|ω), (4)

is called a Gibbs specification for potential Φ at inverse temperature β.

In the case of free boundary conditions, we write uniformly in ω ∈ Ω, for all σ ∈ Ω,

γβΦ,f
V (σ) = γβΦ,f

V (σ | ω) :=
1

ZβΦ,f
V

e−βH
Φ,f
V (σ).

More generally, a specification γ =
(
γV
)
V ∈S is a family of probability kernels satisfying

extra properties (properness and consistency, see [45, 21, 11]) so that they can represent a
regular system of conditional probabilities of some probability measures µ, in such a way that
the DLR equations

µ(σ | FV c)(·) = γV (σ | ·), µ− a.s., (5)

are valid for any V ∈ S and σ ∈ Ω.
This DLR approach to describe probability measures on infinite product probability spaces

is crucial in our framework because it allows the definition of many different measures specified
by the same specification. If the latter situation occurs, we say that there is a phase transition.

Definition 2.3. [Gibbs Measures] A Gibbs measure µ is a probability measure on Ω for
which the DLR equations (5) are valid for a Gibbs specification γ = γβΦ, at some inverse
temperature β > 0 and for a UAC potential Φ. Alternatively, it is a probability measure µ
which is invariant under the action of the kernels γβΦ

V for any finite-volume V ,

µ = µγβΦ
V ,∀V ∈ S.

The set of Gibbs measures specified by the specification γβΦ is denoted by G(γβΦ), and
the study of its properties is a central aim in rigorous statistical mechanics, see [21, 11, 37]. It
is a convex set (more precisely, a Choquet simplex) and one is mainly interested in the study
of its extreme elements, called extremal measures (or sometimes “states”).
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2.2 Gibbs measures on Cayley trees

Ising models on Cayley trees T k have been first rigorously shown to exhibit phase transition
by Preston [44] in 1974. The critical temperature has been explicitely identified in 1989 by
Lyons by exploiting close links with branching processes due to the tree structures, leading to
the by-now famous formula for the critical inverse temperature, namely

βc = arctanh 1/k.

The set of translation-invariant extremal Gibbs measures has been studied by Bleher et al. in
the early nineties [4, 5], see also e.g. [48, 12].

Proposition 2.1. [Gibbs measures of Ising models on Cayley trees, see [44]]

1. Let µ+, µ− be the limiting measures2 of Ising specifications with all + and all − boundary
conditions,

µ+(·) := lim
V ↑S

γβΨ
V (·|+) and µ−(·) := lim

V ↑S
γβΨ
V (·|−).

Then µ+, µ− ∈ G(γβΨ) are extremal at all inverse temperatures β > 0.

2. Let µ# be the limiting measure of Ising specifications with free boundary conditions,

µ#(·) := lim
V ↑S

γβΨ,f
V (·) .

Then µ# is extremal at high temperatures, and becomes non-extremal at low temperatures.
The transition occurs at the spin-glass inverse temperature given by

βSG = arctanh 1/
√
k.

The particular question of the extremality and extremal decomposition of the free boundary
condition case has been a long standing question studied since the seventies [4, 5, 20, 18, 28,
29, 14, 42]. A considerable number of extremal Gibbs measures has been first constructed by
Bleher and Ganikhodjaev:

Theorem 2.1. [5] For β > βc, the number of extreme points of G(γβΨ) is uncountable.

These extreme points can be selected by uncountably many different boundary conditions
for which “half” of the Cayley tree is occupied by the “plus” and the other half by the “minus”.
Note that Higuchi [26] constructed earlier other non-translation-invariant extreme points. It
has been an open question for a long time to know if we have then described all the extreme
points of G(γ), and to derive the convex decomposition of any Gibbs measures w.r.t. these
extremal ones. A decade ago, another uncountable family of non-translation invariant ex-
tremal Gibbs measures different from the Bleher–Ganikhodjaev and the Higuchi ones have
been described by Akin et al. [1], while the concept of weakly periodic Gibbs measures has
been introduced by Rakhmatullaev and Rozikov [46] to describe yet other non-translation in-
variant extremal states. These extremal and non-translation invariant Gibbs measures where
described particularly by Gandolfi et al. as a manifold in [20] in a framework that eventually
led recently to the convex decomposition of the so-called free measure µ# into extremal points
below the spin-glass transition temperature [18].

2In the sense of a convergence along a net directed by inclusion, denoted V ↑ S, see [21].
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2.3 A criterion for Gibbsianness: Quasilocality

An important feature in the theory of Gibbs measures is quasilocality which, heuristically,
ensures that a measurement done at a precise point in the system is not impacted too much
by far away perturbations.

Definition 2.4. [Quasilocal function] A function f : Ω→ R is said to be quasilocal if it is
the uniform limit of a sequence of local3 functions fn, i.e.

lim
n→∞

sup
ω∈Ω
| fn(ω)− f(ω) |= 0.

A specification γ is quasilocal if its kernels leave invariant the set of quasilocal functions
Fqloc; this means in particular that for any local function f and finite set V , the function γV f
defined for any boundary condition ω as

γV f(ω) =

∫
Ω
f(σ)γV (dσ | ω)

is quasilocal.
In particular, for any finite-volume V , γV f is a continuous function for any local function

f ∈ Floc. A measure is quasilocal if it is specified by a quasilocal specification. Remarkably,
it has been shown by Kozlov [33] and Sullivan [49] that quasilocality plus a natural positivity
requirement (non-nullness4) fully characterize Gibbs measures. Thus, if Φ is a UAC potential,
any Gibbs specification γβΦ is quasilocal, so that any Gibbs measure is quasilocal. In
particular, continuity properties are preserved and one can learn in e.g. [11] that conditional
expectations of local functions do not admit points of essential discontinuity (see also [16, 37]
for details).

Being quasilocal for a Gibbs measure means in particular that it is not possible to build a
version of the conditional expectation of a local function which would be discontinuous as a
function of the boundary condition. More precisely we have the following

Definition 2.5. [Point of essential discontinuity] A configuration ω∗ is a point of essential
discontinuity for a measure µ ∈ M+

1 (Ω) if ∃V ∈ S, a function f ∈ Floc, δ > 0 and two
neighborhoods of ω∗, denoted N 1

V (ω∗), N 2
V (ω∗), and defined as

N i
V (ω∗) = {σ ∈ Ω s.t. σV = ω∗V } , i = 1, 2,

such that

∀ξ ∈ N 1
V (ω∗), ∀ζ ∈ N 2

V (ω∗), |µ [f | FV c ] (ξ)− µ [f | FV c ] (ζ)| > δ.

For our purposes, the relevance of the Kozlov–Sullivan characterization, summarized by

Gibbsian =⇒ quasilocal =⇒ essential continuity,

comes from the fact that, for non-null Gibbs measures with finite state-space, continuity is
equivalent to quasilocality [21]. Thus, a Gibbs measure for Ising spins does not admit points

3Recall that a function f : Ω→ R is said to be local if ∃V ∈ S s.t. f is FV -measurable (that is, f depends
only on a finite number of spins). We denote by Floc the set of such functions.

4A specification γ is non-null if ρ(A) > 0 =⇒ γV (A | ω) > 0 for all V ∈ S, A ∈ F , ω ∈ Ω. Non-nullness has
been sometimes named “finite-energy condition”.
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of essential discontinuity. As a consequence, this Kozlov–Sullivan characterization can be used
as a proxy to prove non-Gibbsianness: it suffices to exhibit essential discontinuity (in the sense
of Definition 2.5) of conditional expectations as a function of the boundary conditions (for
example, magnetization at a given site in our Ising context).

In this paper we are concerned with the size of the set of such essential discontinuity points
and show that these discontinuity points form a null-set at any temperature, rendering thus
the transformed measure almost Gibbsian, in the sense recalled below.

2.4 Almost Gibbsian and weakly Gibbsian measures

For a given specification γ, we denote by Ωγ its set of points of essential continuity (good
configurations). Of course, for a Gibbs specification, Ωγ = Ω.

Definition 2.6. [Almost Gibbsian measure] A probability measure µ ∈M1(Ω) is almost
Gibbsian if there exists a specification γ such that

µ ∈ G(γ) and µ(Ωγ) = 1.

This is equivalent to the statement that there exist regular versions of finite-volume condi-
tional probabilities of µ which are continuous as functions of the boundary conditions, possibly
except on a zero-measure set.

Definition 2.7. [Weakly Gibbsian measure] A probability measure µ ∈M1(Ω) is weakly
Gibbsian if µ ∈ G(γβΦ) with a potential Φ converging on a full set (µ(ΩΦ) = 1), i.e. s.t.

∀V ∈ S,
∑

A∩V 6=∅

ΦA(ω) <∞, for µ− a.e.(ω).

Note that an almost-sure version of the Kozlov-Sullivan representation (see [40]) allows to
reconstruct an almost surely convergent potential consistent with an almost Gibbsian measure,
so that almost Gibbs implies weakly Gibbs.

3 Renormalization transformation and results

3.1 Modified majority rule on a Cayley tree

Let us consider the binary Cayley tree at k = 2 (our discussion is easily adaptable to higher
k ≥ 3). Upon deletion of an arbitrary edge 〈i0i1〉 from the Cayley tree T 2, we get two
(identical) rooted Cayley trees, call them T 2

0 and T 2
1 , for which the following holds:

Theorem 3.1. [5] A measure µ ∈ M1(Ω) is an extreme Gibbs distribution on T 2 if and
only if there exist extreme Gibbs distributions µ0, µ1 on T 2

0 and T 2
1 respectively, such that the

following splitting property holds

∀A ∈ F , µ(A) =
1

Z

∫
A
µ0(σT 2

0
)µ1(σT 2

1
)eβJσi0σi1ρ(dσ),

where Z is a normalizing constant depending on β. In such a case, µ0 and µ1 are uniquely
determined by µ.

6



It is thus equivalent to our purposes to work on rooted Cayley trees instead of the full
Cayley tree. Now, let µ be any Gibbs measure for the Ising model on the rooted Cayley tree
T 2

0 . We choose the root as the origin and we denote it r. Define

Ω = {−1,+1}T 2
0 and Ω′ = {−1, 0,+1}T 2

0 .

Let R be any non-negative integer. We define the closed ball of radius R, VR = {i ∈ T 2
0 |

d(r, i) ≤ R} and the sphere of radius R (or sometimes level or generation R), WR = {i ∈
T 2

0 | d(r, i) = R}, where d is the canonical metric on T 2
0 . Vertices of T 2

0 are represented by
sequences of bits by means of the following recurrence:

• Origin r is represented by the void sequence and its neighbors by 0 and 1.

• Let R > 0 and let i ∈WR be represented by i∗. The representations of the neighbors of
i in WR+1, called k and l, are k∗ = i∗0 and l∗ = i∗1.

In this way we obtain a representation of all the vertices of T 2
0 (see Figure 1). To avoid

notational overloading we shall use the same symbol i for both the vertex or its binary rep-
resentation i∗. Define the root cell Cr = {r, 0, 1} and let, ∀j ∈ T 2

0 , j 6= r a general cell
Cj = {j, j0, j1}, where j0 and j1 are the two neighbors (or children) of j from the “following”
level (for example, C0 = {0, 00, 01}, see Figure 2). Define as well cj = |Cj |.

r

1

11

111 110

10

101 100

0

01

011 010

00

001 000

Figure 1: Binary representation of the vertices of T 2
0 , the rooted Cayley tree of degree 2. Here

vertices up to level/generation R = 3 are represented.

In this paper we shall consider cj = c = 3.
Let us consider now the following, deterministic Majority rule transformation:

T : Ω −→ Ω′

ω 7−→ ω′,

where the image spin ω′ at site j is defined by

ω′j =



+1 iff 1
c

∑
i∈Cj ωi = +1

0 iff 1
c |
∑

i∈Cj ωi |< 1

−1 iff 1
c

∑
i∈Cj ωi = −1.
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Cr

C1 C0

C11 C10 C00C01

Figure 2: Pictorial representation of the transformation T acting on T 2
0 . Starting vertices are

represented by small circles and image vertices by squares.

This transformation extends naturally on measures. We define ν := Tµ to be the renor-
malized measure defined as the image measure of our Gibbs measure µ, so that

∀A′ ∈ F ′, ν(A′) = µ(T−1A′)

where T−1A′ ∈ F is the pre-image of the measurable set A′,

T−1A′ =
{
ω ∈ Ω, T (w) ∈ A′

}
3.2 Previous result: Non-Gibbsianness at any temperature

In [35], one of us proved that the image measure of the modified majority rule T on a rooted
Cayley tree T 2

0 of degree 2 is not Gibbsian:

Theorem 3.2. [35] Let µ be any Gibbs measure for the Ising model on T 2
0 . Then the renor-

malized measure ν = Tµ is non quasilocal at any β > 0 and cannot be a Gibbs measure.

The result of [35] is due to the following

Lemma 3.1. The “null-configuration” ω′0, defined by ω′0i = 0 at any site i ∈ T 2
0 , is a bad

configuration, i.e. a point of essential discontinuity for the conditional probabilities of the
image measure ν under the majority rule T .

Thus, we know that the “null configuration” is a bad configuration and that the image
measure is not quasilocal. To incorporate the renormalized measure within the Dobrushin
program, our purpose is to evaluate the measure of the set of such “bad configurations”.

4 Main result: almost Gibbsianness at any temperature

The main contribution of this paper is the following

Theorem 4.1. The renormalized measures ν = Tµ, obtained by the modified majority rule
from any Gibbs measure µ for the Ising model on T 2

0 , are almost Gibbsian at any temperature.
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Proof. In the non-Gibbsian result of the previous section, the essential discontinuity of the
bad null configuration ω′0 defined above is due to the massive dissemination of information
possible through a neutral (filled of zero) cell, for which no specific discrimination between
plus or minus is made. In turns, it appears that the crucial point to get essential discontinuity
via transmission of far away information is that the configuration possesses enough percolation
of zeros.

We proceed as follows: first, we recall some necessary percolation notions (paths and
percolations of zeros) and describe the essential continuity of the magnetization in absence
of such a percolation (Lemma 4.2). Second, we extend this continuity result to the case of
a single infinite path of zeros (Lemma 4.3), and use its proof to get a sufficient condition
for discontinuity coined in terms of the number of infinite such paths, which should increase
sufficiently fast with the volume (Lemma 4.4). Finally, we use percolation techniques (Lemma
4.6) to upper bound the measure of bad configurations by zero (Lemma 4.8), so that almost
Gibbsianness follows.

�

Definition 4.1. [Path of zeros] Let η′ be any image configuration. For an integer R, a path
of zeros from the origin to level R is the sequence of sites π = (ik)k=0,...,R s.t. i0 = r, and ∀k =
1 . . . R, ik ∈Wk, ik, ik−1 are n.n. and ∀k ≤ R, η′(ik) = 0.

We denote by NR(η′) the number of paths of zeros connecting the origin to level R in
the configuration η′, and the number of infinite paths by N(η′) = limR→∞NR(η′). When
N(η′) 6= 0, we say that there is percolation or clusters of zeros.

We first remark that in absence of percolation of zeros in a configuration η′, conditional
magnetizations are (essentially) continuous, in the sense that there always exists a version of
the conditional expectation of the spin at the origin which is continuous.

4.1 Continuity of the magnetization in absence of percolation

Consider first the case of absence of percolation of zeros, that is, let us take a configuration
η′ such that N(η′) = 0. Then there exists an integer R0 ≥ 0 such that for all R ≥ R0 =
R0(η′), NR(η′) = 0. Let us prove that any such η′ is a good configuration for the image measure
ν = Tµ. In order to do so, consider the basis of neighborhoods NR(η′) for a configuration η′,

NR(η′) = {ω′ ∈ Ω′, ω′VR = η′VR , ω
′ arbitrary elsewhere}.

We shall study the continuity, as a function of the boundary condition, of the value of the
image spin at the origin r in the neighborhood of η, namely the conditional magnetization

〈σ′r〉η
′,R = ν[σ′r | σ′{r}c = ω′{r}c , ω

′ ∈ NR(η′)]. (6)

Lemma 4.1. [35] Let η′ be an image configuration s.t. N(η′) = 0. Then, for all R ≥ R0(η′),
the conditional magnetization (6) reduces to

〈σ′r〉η
′,R = ν[σ′r | σ′VR0\{r}

= η′VR0\{r}
]

and it is independent of R ≥ R0.

The proof of Lemma 4.1 has been reported in [35]. It consists of direct computations of ele-
mentary conditional expectations in this discrete framework. It follows that the magnetization
in a neighborhood of such an η′ is a function of η′VR0\{r}

, and thus essentially continuous:
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Lemma 4.2. [35] The magnetization is essentially continuous as a function of the boundary
condition η′, for all η′ ∈ T (Ω) without percolation of zeros.

Proceeding similarly for any local functions by integrating out w.r.t. spins at the sites of the
dependence set of f , one get this essential continuity for the expectation of any local function.

4.2 Continuity of the magnetization in case of unique infinite cluster

In this section we refine the analysis and estimate the effect that an infinite path of zeros in
the image configuration could produce on the conditional expectation on the spin at the origin.
Using a transfer matrix approach, we prove that this effect is asymptotically absent (essential
continuity), except for a few peculiar configurations5. We evaluate also finite-volume effects
in order to get afterwards a sufficient condition on essential continuity in next section.

Lemma 4.3 (Continuity of conditional magnetization). Let η′ ∈ Ω′ such that N(η′) = 1,
except alternating configurations of the type of η′1alt, η

′2
alt as defined in (14). Then the conditional

magnetizations (6) are essentially continuous at η′. Moreover, there exists a strictly positive
constant C > 0 such that

∀R ≥ 0, ∀ω′1, ω′2 ∈ NR(η′), | 〈σ′r〉ω
′
1,R − 〈σ′r〉ω

′
2,R |≤ C · (e−β)R. (7)

Proof. Let us consider, for η′ ∈ Ω′ such that N(η′) = 1, the set of sites π(η′) to be the (unique)
infinite cluster from the origin in configuration η′. We restrict ourselves to configurations where
the spin in the cells in the neighborhood of the path is never zero and denote the path by π. If
this is not the case, one can start the tree at the first such cell, and evaluate the magnetization
at this site “r”. As the labeling of the trees should not affect our results, we can also assume
without loss of generality that π is the set of sites having binary representation “1”, except the
first one.

Since the length of all the other paths of zeros is finite, we can always consider an integer
R1 = R1(η′) which is the maximal length of these other paths (similarly to the definition of
R0 adopted in Section 4.1). Consider now a region which is sufficiently far away from the
origin r, with R ≥ R1, i.e. where no such terminating path of zeros penetrates. Define also
the projection Y ′ of η′ onto the only infinite path π by Y ′R = η′WR∩π, usefully extended on
the other neighbors of the origin by Y ′−1 = η′0. Write as usual Y = T−1(Y ′) and define the
shortcut Xn = YR−n+1, for all integers n ≤ R. We study the asymptotic behavior of the
ν-magnetization when we have around the origin a b.c. in a neighborhood of η′ :

〈σ′r〉η
′,R = ν[σ′r = + | A′R]− ν[σ′r = − | A′R],

where
A′R = {σ′ ∈ Ω′, σ′VR\{r} = η′VR\{r}}.

Up to now, η′0 6= 0 and we shall assume without loss of generality that η′0 = +. This implies
σ0 = + and, with the usual notation AR = T−1(A′R), we get

〈σ′r〉η
′,R = µ[σr = σ0 = σ1 = + | AR]

= µ[σr = σ1 = + | AR ∩ {σ0 = +}]µ[σ0 = + | AR]

= µ[σr = σ1 = + | AR ∩ {σ0 = +}].
5See (14), these are the configurations where the unique path of zeros is neighbored by alternating +/−’s.
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When η′0 = −, we analogously obtain 〈σ′r〉η
′,R = µ[σr = σ1 = − | AR ∩ {σ0 = −}]. Thus we

only have to study the behavior of

µ[σr = σ1 = + | AR ∩ {σ0 = +}] and µ[σr = σ1 = − | AR ∩ {σ0 = −}],

knowing the configuration η′ along the path is zero under the previous assumptions on η′: we
have to study the law of X with this environment η′.

Now, if Xn is the spin at a site n ∈ π, let hn be the spin value at the neighbor of n which is
not on the path and define h = (hn)n∈N. All the possible values of h, which can be seen as an
external field for the process X, are determined by the configuration η′ but are independent of
R because of the uniqueness of the path of zeros. Let us denote by P the probability measure
µ[. | AR]. We shall study first the law of X under P.

Forget for a while the constraint due to the path of zeros and study the law of X without it.
With the fixed spin at the origin and a fixed external configuration (field) h = h(η′) = (hn)n∈N,
the law of X is exactly the law of a one dimensional Ising model at inverse temperature β with
coupling J > 0 and external magnetic field g defined by

gR+1 = 0 and ∀n ∈ N, gn = βJhn. (8)

We shall now incorporate the coupling in the temperature, assume J = 1 and denote γ the
inhomogeneous specification of this Ising chain on Z (see e.g. [21] for details).

From now on we can proceed via a classical transfer matrix approach: define ∀n ∈ N a
2× 2 matrix Q′n by

∀n ∈ N, ∀x, y ∈ {−,+}, Q′n(x, y) = exp
(
βxy +

β

2
(hn−1x+ hny)

)
; (9)

and rewrite the specification in terms of this transfer matrix: Define V = {i+1, . . . , k−1} ⊂ N
and let σ, ω ∈ {−,+}N. Then

γV (σV | ω) =
Q′i+1(ωi, σi+1)(

∏k−1
j=i+2Q

′
j(σj−1, σj))Q

′
k(σk−1, ωk)

(
∏k
j=i+1Q

′
j)(ωi, ωk)

.

We first derive the homogeneous case hn = + ∀n ∈ N, assuming η′0 = +6, and afterwards for
a general, possibly inhomogeneous environment h (leading to inhomogeneous Markov chains),
without the constraints of being on the path in a first step, and imposing it in a second step.

Homogeneous external field case
Let us assume η′0 = +, hn(η′) = +, ∀n ∈ N and write η′ = η′+. We have

∀n ∈ N, Q′n = Q′ =

(
1 e−β

e−β e2β

)
.

It is well known that there is a one to one correspondence between the set of all positive
homogeneous Markov specifications and the set of all stochastic matrices on E with no vanishing
entries [21]. Hence, under the environment h (without the constraint on the path of zeros),
the law of X is that of an homogeneous Markov chain with a transition matrix

P =

(
a 1− a

1− b b

)
,

6The cases η′0 = − or hn = −, ∀n ∈ N, are treated similarly.
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where a = e−β

coshβ+
√
e−β+(sinhβ)2

∈ ]0, 1[ and b = e2β .

Let us now introduce the constraint of being on the path of zeros. The law of X is still
Markovian, but now some transitions are forbidden. In this case with hn = +, ∀n ∈ N, the
transition matrix becomes

P+ =

(
a 1− a
1 0

)
because, with this constraint, necessarily

{hn+1 = +, Xn = +} =⇒ {Xn+1 = −}

otherwise the infinite path of zeroes would end at cell Cn.
Now, recall that in order to study the continuity of the magnetization under the environ-

ment induced by η′+, we have to study the asymptotic behavior, on the neighborhoods of η′+

and when R goes to infinity, of 〈σ′r〉η
′+,R. Under the assumption of η′0 = +, we get

〈σ′r〉η
′+,R =µ

[
{σ1 = σr = +} | AR ∩ {σ0 = +}

]
=γR

[
XR = XR+1 = + | X0 = x0

]
=µP

[
XR = XR+1 = + | X0 = x0

]
=µP

[
XR+1 = + | XR = +

]
µP
[
XR = + | X0 = x0

]
=P (+,+)(PR+1

+ )x0,+,

(10)

in accordance with the expression of the Ising random field as a Markov chain7. On the first
step, we keep the matrix P because there is no constraint. Thus, studying continuity of the
magnetization is reduced to the study of the dependence on x0 of the expression in (10). By
the usual diagonalization procedure, we get for all n ∈ N:

Pn+ =

 1
2−a + (a−1)n+1

2−a
1−a
2−a −

(a−1)n+1

2−a

1
2−a + (a−1)n

2−a
1−a
2−a −

(a−1)n

2−a

 ,

and hence M := limn→∞ P
n
+ is simply

M =

 1
2−a

1−a
2−a

1
2−a

1−a
2−a

 . (11)

Notice that the elements of each column in M are equal, implying that limR→∞(PR+1
+ )x0,+ is

independent on x0: the magnetization is a continuous function of the boundary condition. It
is given by

〈σ′r〉η
′+

= e2βa
1− a
2− a

for a configuration η′+ with one infinite path of zeros and hn = + everywhere. For a config-
uration η′− with only one path of zeros and hn = − everywhere, the same continuity result
holds, and we simply have

〈σ′r〉η
′−

= −e2βa
1− a
2− a

= −〈σ′r〉η
′+
,

7Here, (.)x0,+ denotes the column + and line x0 of the matrix, with x0 = + or −.
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where we recall that a = a(β) = e−β

coshβ+
√
e−β+(sinhβ)2

∈ ]0, 1[.

Inhomogeneous external field case
Here, we deal with an inhomogeneous Markov Chain without knowing exactly the transition

matrix (we only know a transfer matrix and the notion of boundary laws, see [21], Def. 12.10).
With the path of zeros constraint, the law of X is still Gibbsian but the potential now becomes

ΨA(ω) =



−βωn−1ωn − β
2 (hnωn + hn−1ωn−1)

iff A = {n− 1, n} and hnωn−1 = hnωn = +

+∞ iff A = {n− 1, n} and ωn = ωn−1 = hn

0 otherwise,

because some transitions are forbidden under the constraint. The potential can take infinite
values and it provides a kind of hard core exclusion potential, but the formalism is the same as
in the finite potential case (provided the objects are defined [21]). We then have to deal with
various products of the matrices Qhnhn−1 depending on h, so that it is useful to introduce:

Q++ =

 1 e−β

e−β 0

 , Q−− =

 0 e−β

e−β 1

 ,

Q−+ =

 0 e−2β

1 eβ

 and Q+− =

 eβ 1

e−2β 0

 .

Keeping the same notations as in the homogeneous case, we first deal with the case η′0 = +.
Let x0 ∈ {−1,+1} and define, for R ≥ 0,

〈σ′r〉η
′,R
x0

= ν
[
σ′r | σ′{r}c = ω′{r}c , ω

′ ∈ NR(η′), X0 = x0

]
.

Proceeding as usual, we get, in this case where η′0 = +,

〈σ′r〉η
′,R
x0

= ν
[
σ′r = + | σ′{r}c = ω′{r}c , ω

′ ∈ NR(η′), X0 = x0

]
= µ

[
XR = XR+1 = + | XR+2 = +, h,X0 = x0

]
,

where the notation “h” means a conditioning with the event of being under the environment
h = (hn) besides the path of zeros. Using again the expression (9) with transfer matrices,

〈σ′r〉η
′,R
x0

=
Q′R+2(+,+)Q′R+1(+,+)[QR . . . Qn . . . Q1]x0,+

Q′R+2(+,+)Q′R+1(+,+)([QR . . . Qn . . . Q1]x0,− +Q′R+2[QR . . . Qn . . . Q1]x0,+)

=
[QR . . . Qn . . . Q1]x0,+

[QR . . . Qn . . . Q1]x0,− + [QR . . . Qn . . . Q1]x0,+

where, due to the constraints and the fields (8) given by gR+1 = 0, gR+2 = 2, gn = hn ∀n ≤ R,

Q′R+2 =

 1 1

e−2β e2β

 , Q′R+1 =

 eβ−
βhR

2 e−β−
βhR

2

e−β+
βhR

2 eβ+
βhR

2
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and
∀n ≤ R, Qn = Qhnhn−1 .

Thus, in order to study the continuity of this magnetization as a function of the boundary
conditions h0, h1 and x0, we have to study the asymptotic behavior, depending on h0, h1, x0,
of the matrix products

PR = QR . . . Q1 =

1∏
n=R

Qn =

1∏
n=R

Qhnhn−1

taking into account the constraints8. Denote

Pn =

 an bn

cn dn


and assume first that, there exists n0 = n0(η′) < +∞ s.t. at least for n ≥ n0 ∈ N, no entry
of Pn is zero, namely an · bn · cn · dn > 0. This condition (finiteness of n0) holds for all
configurations η′ except special alternating configurations (see (14)).

For such η′, take now n ≥ n0 = n0(η′) and denote xn = an
bn

and yn = cn
dn
. We want to

study the asymptotic behavior of the sequences x = (xn)n∈N and y = (yn)n∈N. We have the
general pattern Pn+1 = Pn ×An, with

An ∈ {Q++, Q+−, Q−−, Q−+}

so that we can consider the four cases separately.

Case An = Q++ : We obtain

Pn+1 =

 an + bne
−β ane

−β

cn + dne
−β cne

−β


and this yields the same evolution for (xn)n∈N and (yn)n∈N:

xn+1 = f1(xn) and yn+1 = f1(yn),

where f1 is defined for all x > 0 by

f1(x) = 1 +
e−β

x
≥ 1.

We also have

∀x ≥ 1, | f ′1(x) |= e−β

x2
≤ e−β < 1.

This application is then contracting as soon as x ≥ 1, which will be true after one step
because f1(x) ≥ 1 ∀x > 0. We denote the Lipschitz constant k1 = e−β , and we have

∀n ≥ n0, | xn+1 − yn+1 |≤ k1· | xn − yn | .
8The constraints imply that some products such as Q++Q−+ are forbidden.
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Case An = Q+− : We obtain

Pn+1 =

 ane
β + bne

−2β an

cne
β + dne

−2β cn


and the same contractive result holds with the function f2 :

f2(x) = eβ +
e−2β

x
> eβ > 1, for all x > 0.

Now

∀x ≥ 1, | f ′2(x) |= e−2β

x2
≤ e−2β < 1

and we will denote by k2 = e−2β this second Lipschitz constant.

Case An = Q−− : We obtain

Pn+1 =

 bne
−β ane

−β + bn

dne
−β cne

−β + dn


and f3(x) = 1

x+eβ
, ∀x > 0, which gives a Lipschitz constant k3 = k2 = e−2β .

Case An = Q−+ : The contraction holds with k4 = k2 = e−2β .

Thus, whatever the configuration η′ different9 from the alternating ones we always have

∀n ≥ n0, | xn − yn |≤ en0β

(
1

eβ

)n
· | xn0 − yn0 | (12)

for some finite n0 = n0(η′). Let us come back to the magnetization (6). Whatever h0 and h1

are, we have

〈σ′r〉η
′,R
x0

=
[PR]x0,+

[PR]x0, + [PR]x0,+
,

which yields 〈σ′r〉
η′,R
+ = dR

cR+dR
and 〈σ′r〉

η′,R
− = aR

aR+bR
. If n ≥ n0, we get

〈σ′r〉
η′,R
+ =

1

1 + yR
and 〈σ′r〉

η′,R
− =

1

1 + xR

and

| 〈σ′r〉
η′,R
+ − 〈σ′r〉

η′,R
− |≤| xR − yR |≤ enoβ ·

(
1

eβ

)R
| xn0 − yn0 | (13)

Now, for all η′ 6= η′1alt, η
′2
alt, write

C(η′) := en0(η′)(β) | xn0(η′) − yn0(η′) |

so that
C := sup

η′ 6=η′1alt,η
′2
alt

C(η′) <∞

9In the sense that it should not contain infinite alternate paths like in η′1/2alt in (14). By abuse of notation,
we write η′ 6= η′1alt, η

′2
alt for this property.
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is well defined. This proves that (13) converges to zero as R→∞, proving also (7).
Proceeding similarly in the case η′0 = −, and conditioning on the events {XR+2 = +}

and {XR+2 = −}, we get continuity of the magnetization for all the configurations having
only one path of zeros so that n0(η′) < ∞, i.e. except the so-called exceptional alternating
configurations described below. This proves Lemma 4.3.

Remark (Peculiar alternating configurations) Assume again η′0 = + and define η′1alt and
η′2alt to be such that N(η′) = 1 and

∀i = 1, 2, ∀R ∈ N, ∀n = 0 . . . R− 1, hiR = (−1)i, hin = −hin+1 (14)

where h1 (resp. h2) is the environment under η′1alt (resp. η′2alt). For such configurations, ele-
mentary analysis of the products of matrices considered in this section show that the limits
considered do not exist, because sequences alternate between two accumulation points. Nev-
ertheless, we prove in Lemma 4.7 that such configurations form a ν-negligible set.

�

4.3 Sufficient condition for essential continuity

Recall that, for a configuration η′, NR(η′) denotes the number of paths of zeros up to level R
in η′ and N = N(η′) = limR→∞NR(η′) exists by monotonicity. Use Lemma 4.3 to show

Lemma 4.4. Let η′ ∈ Ω′ with N(η′) arbitrary, different from the null configuration or the
alternate configurations defined above in (14). Then

∀R ≥ 0, sup
ω′1,ω

′
2∈NR(η′)

| 〈σ′r〉ω
′
1,R − 〈σ′r〉ω

′
2,R |≤ C ·NR(η′) · (e−β)R. (15)

Proof. The proof consists in associating the recursive tree structure and the Markov property
of the measure µ to the estimate (7) of Lemma 4.3 for each path of zeros of length R.

First of all, let Π(η′) = (πk)
NR(η′)
k=1 be the set of path of zeros in η′ according to some

(inessential) ordering, and let η′k be the configuration coinciding with η′ everywhere, except
at the NR(η′) − 1 path of zeros different from the k-th one, that is, η′k = η′πk∪Πc+πck∪Π. Let
nk(η

′) be the smallest integer such that no entry of the matrix Pn along πk is zero; that is,
accordance with our notations in Lemma 4.3, nk(η′) = n0(η′k).

If NR(η′) = 1 the claim just coincides with Lemma 4.3. Let us now prove it for NR(η′) = 2.
First, observe that, for any ω′1, ω′2 ∈ NR(η′), by Markov property and splitting on the tree,

∀R > 0,
∣∣∣〈σ′r〉ω′1,R − 〈σ′r〉ω′2,R∣∣∣ ≤ p(β)

∣∣∣〈σ′r1〉ω′1,R〈σ′r0〉ω′1,R − 〈σ′r1〉ω′2,R〈σ′r0〉ω′2,R∣∣∣
where p(β) := ν[η′0 = 0] = 2+e−2β

(e−β+eβ)
2 (see Section 4.4).

Second, remark that any four numbers x, y, z, w ∈ [0, 1] we have

|xy − zw| = |xy − yz + yz − zw| = |y(x− z) + z(y − w)| ≤
tr.ineq.

y|x− z|+ z|y − w|

≤
y,z∈[0,1]

|x− z|+ |y − w| .
(16)

Putting 
x = 〈σ′r0〉ω

′
1,R

y = 〈σ′r1〉ω
′
1,R

z = 〈σ′r0〉ω
′
2,R

w = 〈σ′r1〉ω
′
2,R
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gives∣∣∣〈σ′r1〉ω′1,R〈σ′r0〉ω′1,R − 〈σ′r1〉ω′2,R〈σ′r0〉ω′2,R∣∣∣ ≤ ∣∣∣〈σ′r0〉ω′1,R − 〈σ′r0〉ω′2,R∣∣∣+
∣∣∣〈σ′r1〉ω′1,R − 〈σ′r1〉ω′2,R∣∣∣ .

(17)
Now, apply Lemma 4.3 to each of the quantities of the rhs, we get

∀R ≥ 0, sup
ω′1,ω

′
2

| 〈σ′r〉ω
′
1,R − 〈σ′r〉ω

′
2,R |≤ 2C (e−β)R,

which is the claim for NR(η′) = 2. The result for general (finite) NR(η′) is obtained
analogously by iteration. �

4.4 Percolation model and almost Gibbsianness

In the previous sections we have seen that the number of infinite paths of zeros is a good
discriminant for detecting failures of quasilocality. Let us consider now the marginal probability
of being 0 for the image configuration η′. Due to the overlap among neighboring cells involved in
the majority rule transformation T , clearly the random variables (η′j)j∈T 2

0
are not independent.

Nevertheless, we can obtain a few informations about η′j ’s due to the Markovianness10 of the
original measure. For a site j ∈ T 2

0 , denote j1 and j0 its descendants using the binary
representation introduced in Section 3. When the conditioning is possible, for η′ ∈ Ω′, from
Bayes’s formula we get

ν
[
η′j1 = 0

]
=ν
[
η′j1 = 0 | η′j = +

]
ν
[
η′j = +

]
+ ν
[
η′j1 = 0 | η′j = −

]
ν
[
η′j = −

]
+

+ν
[
η′j1 = 0 | η′j = 0

]
ν
[
η′j = 0

] (18)

(if a conditioning is not possible, an analogous formula holds without their contributions). Let
us now compute separately the three different conditional probabilities appearing in (18). In
order to do so, let us introduce the shortcut

µ±±|± := µ
[
σj0 = ±, σj1 = ± | σj = ±

]
.

First, for the event {η′j = +},

ν
[
η′j1 = 0 | η′j = +

]
= (µ+−|+ + µ−+|+) + µ−−|+ =

2

(e−β + eβ)
2 +

e−2β

(e−β + eβ)
2

=
2 + e−2β

(e−β + eβ)
2 .

(19)

Analogously for the event {η′j = −} we get

ν
[
η′j1 = 0 | η′j = −

]
= 2µ+−|− + µ++|− =

2 + e−2β

(e−β + eβ)
2 . (20)

Lastly, the contribution due to conditioning on {η′j = 0} becomes

ν
[
η′j1 = 0 | η′j = 0

]
=

2 + e−2β

(e−β + eβ)
2 (µ[σj = +] + µ[σj = −]) =

2 + e−2β

(e−β + eβ)
2 ,

10Strictly speaking, the standard (one-sided) Markov chain property is valid only for the Gibbs measures
which are indeed Markov chains, see [21, 26, 48, 51]. Nevertheless, this is true for any extremal Gibbs measures,
and once our result is proven for any extremal µ, it is straightforward to extend to all Gibbs measures.
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where the factors 2 come from +/− symmetry in a progeny at fixed father. Thus, despite the
spins being dependent, the three considered events are indeed uncorrelated and we just have

ν[η′j = 0] := p(β) =
2 + e−2β

(e−β + eβ)
2 ∀j ∈ T 2

0 .

Therefore, the problem becomes one of bond percolation on a Cayley tree with a β-dependent
probability of open bond (see e.g. [23], Chapter 10). In the case of our binary tree T 2

0 , N(η′)
being the number of infinite clusters of zeros in the configuration η′, we thus have

ν[N(η′) > 0] =


0 iff p(β) ≤ pc = 1

2

> 0 iff p(β) > pc = 1
2 .

In particular, we get almost Gibbsianness at high temperatures β ≤ β1 with β2
1 = ln

(
1 +
√

2
)
.

Let us now study almost Gibbsianness in the low temperature regime β > β1. By means
of the sufficient condition of Lemma 4.4, our aim is first to investigate the ν-measure of the
set Ωg of configurations for which NR(η′) (the number of paths of zeros between the root and
generation R in configuration η′) grows slower than eβR:

Ωg :=

{
η′ ∈ Ω′ : lim

R→∞

NR

eβR
= 0

}
. (21)

Lemma 4.5. Let µ be any Gibbs measure for the Ising model on T 2
0 and ν = Tµ. Then

ν(Ωg) = 1.

Proof. To proceed, we prove limR→∞ ν
[
{NR(η′) > eβR}

]
] = 0 so that typically limR

NR
eβR

= 0.
To this aim, let us consider the sequence (NR)R of random variables on (Ω′,F ′). As R

grows, there is a probability p(β)2 of increasing NR by 1 (i.e. opening two new bonds), a
probability (1− p(β))2 of closing two bonds, etc. Therefore, for ν-a.e. η′,

Eν
[
NR | FVR−1

]
(η′) = p2 (NR−1 + 1) + 2p(1− p)NR−1 + (1− p)2 (NR−1 − 1)

= NR−1(η′) + 2p− 1.
(22)

By induction we simply get Eν [NR] = p+ (R− 1) (2p− 1) and thus

lim
R→∞

Eν [NR]

eβR
= 0. (23)

�

To go beyond expectations, let us now bound the probability of a deviation larger than eβR.
In the context of percolation on trees, at this point one usually exploits the special tree topology
to obtain recursive relations. An example is the determination of the critical temperature of the
ferromagnetic Ising model with constant interaction strength (see [39], Theorem 2.1). Instead,
here we obtain a (tight) bound on the probability of an exponential deviation following a
slightly different route based on a combination of an exponential Chebyshev’s inequality and
a uniform bound on the cumulant generating function of NR:
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Lemma 4.6 (Exponential deviation bound for NR). For any θ ≥ 0

ν[NR(η′) > eβR] ≤ eθ(R−eRβ)

so that only sub-exponential deviations are allowed at any finite temperature 1
β as R→∞.

Proof. For R > 0, exponential Chebyshev’s inequality implies, ∀θ ∈ R,

ν[NR(η′) > eβR] ≤ Eν
[
eθNR(η′)

]
e−θe

Rβ
. (24)

In analogy with (22) we just have

Eν
[
eθNR(η′) | FR−1

]
= p2eθ(NR−1+1) + 2p(1− p)eθNR−1 + (1− p)2eθ(NR−1−1)

=
(
p2eθ + 2p(1− p) + (1− p)2e−θ

)
eθNR−1 ,

(25)

and hence by recurrence the full moment generating function (MGF) is given by

Eν
[
eθNR(η′)

]
:= MR(θ, p) =

(
p2eθ + 2p(1− p) + (1− p)2e−θ

)R
.

A straightforward calculation shows that, for θ ≥ 0, the Cumulant KR(θ, p) := lnMR(θ, p)
satisfies, uniformly in θ,

KR(θ, 0) = −Rθ ≤ KR(θ, p) ≤ Rθ = KR(θ, 1),

from which the assertion follows directly (recall that p = p(β) ∈ [0, 1]). �

From Lemma 4.6 one gets that ν[NR(η′) > eβR] converges to 0 more than exponentially in
the depth R, namely as ∼ e−e

R , which together with (23) implies Lemma 4.5 by elementary
probabilistic arguments. Indeed, for l = eβ and ε = εn = 1

2n > 0, we have

ν(Ωc
g) = ν

[
∪n
{

lim inf
R

NR(η′)

lR
> εn

}]
≤ lim inf

R
sup
ε
ε e−l

R →
R→∞

0 .

Now, we consider the integers nk defined in Section 4.3 and introduce the sets

Ωk :=
{
η′ : nk(η

′) <∞
}
.

Consider the subset of Ωg

Ωf :=

{
lim
R→∞

NR(η′)

eβR
= 0 and nk(η

′) <∞, k = 1, . . . , NR(η′)

}
= Ωg ∩

(
∩k Ωk

)
.

We prove now that it is also ν-typical.

Lemma 4.7.
ν[Ωf ] = 1.
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Proof. Consider the event that, up to level R− 1, the configuration η′ contains a path of zeros
along sites π and alternating field hn = (−1)n up to level R− 1 at primed neighbors of π, that
is, in the notations of Lemma 4.3, the event

AR−1(η′) = {hn = (−1)n, ∀n = 1, . . . , R− 1 at neighboring sites of a path of zeros π} .

Then

P
[
hR · hR−1 = −1|AR−1(η′)

]
β
≤ P

[
hR · hR−1 = −1|AR−1(η′)

]
β=0

=

(
1

3

)2

+

(
1

3

)2

< pc,

where we have used the infinite temperature limit gives an upper bound by attractivity,
and pc = pc(2) = 1

2 is critical threshold for Bernoulli percolation on a Cayley tree order 2.
Thus, if hR−1 = +1 with η′πR = 0 then there are 3 choices of non-primed spins in η′πR−1

, and
3 choices in η′πR = 0 (Fig. 3). We can thus dominate the probability of this event of hR’s
being alternating (also called “zebra percolation”, see [19]) by a subcritical percolation event,
with parameter q < 1/2, and this probability goes to 0 as R → ∞. This argument is readily
extended to each path of zeros since, after conditioning with our events, the subtrees become
independent. Thus not only ν[n0 <∞] = 1 but also ν[Ωk] = ν[nk <∞] = 1, ∀k ≥ 1.

Eventually, by independence combined with ν[Ωg] = 1, we finally get

ν[Ωf ] = ν
[
Ωg ∩

(
∩k{nk <∞}

)]
= ν[Ωg] ·

∏
k

ν[Ωk] = 1 ·
∏
k

1 = 1.

+

−

+

0

0

0 0

Figure 3: Slice of a configuration η′ at generations R− 1, R,R+ 1.

�

Now, write Ωc for the set of good configurations for the conditional magnetization,

Ωc = {η′ ∈ Ω′ : 〈σ′r〉· is essentially continuous}.

Lemma 4.8.
Ωf ⊂ Ωc.

Proof. This is direct from the definition of our sets and previous lemmata. Consider η′ ∈ Ωf ,
so that in particular C(η′) <∞, as well as C = sup′η C(η′) <∞. One has

NR(η′)

eβR
−→
R→∞

0
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implying essential continuity by (15), so that η′ ∈ Ωc.
�

Our percolation techniques yields thus the ν-a.s. essential continuity of conditional mag-
netizations and Lemma 5.

The extension of this almost-sure continuity to the one of conditional expectations of any
local function is straightforward by decomposition into simple functions, in the framework of
Georgii [21], Chapter 2, and Theorem 4.1 follows.

5 Possible extensions and research perspectives

It would be interesting to understand if our almost Gibbsianness result holds for Cayley trees
of general order k ≥ 2. Concerning the crucial step in Theorem 4.6, here we only observe that
the MGF of the number of zeros reaching level R in primed configuration η′, N (k)

R (η′), is

M
(k)
R (θ, p(k)) =

[
e−θ

(
p(k)

(
eθ − 1

)
+ 1
)k]R

,

where now p(k) ≡ p(k)(β) is the probability that a primed 0 percolates at inverse temperature
β for the Cayley tree T k (i.e. generalizing (4.4)), and a k vs β tradeoff becomes possible.
Recently, ferromagnetic Ising models on Cayley trees subjects to inhomogeneous external fields
have attracted some interest that could be useful for our purposes (see e.g. [3] for a recent
work concerning spatially dependent external fields that are “small perturbations” of the critical
external field value).

Moreover, the model considered in this paper can be naturally generalized to non-rooted
Cayley trees and to non-uniform cj possibly different from two, or with other sizes of cells.
The majority rule could also be generalized as a stochastic transformation. For example, let
ε ∈ [0, 1] and ξ be a Bernoulli random variable with parameter ε and values 0 or 1. Define the
deterministic map tε : Ω −→ Ω′;ω 7−→ ω′ where ω′ is defined by

ω′j =


+1 iff 1

c

∑
i∈Cj ωi = +1 and ξ = 0

−1 iff 1
c

∑
i∈Cj ωi = −1 and ξ = 0

0 otherwise.

Its action is described by a probabilistic kernel Tε defined by:

∀A′ ∈ F ′,∀ω ∈ Ω, Tε(ω,A
′) = (1− ξ)δtε(ω)(A

′) + ξδ0(A′).

It could be interesting to study the difference between the deterministic transformation and
the stochastic one, as this could play a role on the degree of non-Gibbsianness of the image
measure, similar to the van den Berg example on the integers (see [38]).
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