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We discuss the optimal matching solution for both the assignment problem and the matching
problem in one dimension for a large class of convex cost functions. We consider the problem in
a compact set with the topology both of the interval and of the circumference. Afterwards, we
assume the points’ positions to be random variables identically and independently distributed on
the considered domain. We analytically obtain the average optimal cost in the asymptotic regime of
very large number of points N and some correlation functions for a power-law type cost function in
the form c(z) = zp, both in the p > 1 case and in the p < 0 case. The scaling of the optimal mean
cost with the number of points is N−p/2 for the assignment and N−p for the matching when p > 1,
whereas in both cases it is a constant when p < 0. Finally, our predictions are compared with the
results of numerical simulations.

I. INTRODUCTION

After the seminal works of Kirkpatrick et al. [1], Or-
land [2], and Mézard and Parisi [3], random optimization
problems have been successfully studied using statistical
physics techniques, such as the replica trick or the cavity
method [4, 5]. In a combinatorial optimization problem,
we consider a finite set M of possible configurations µ,
and we associate a cost E(µ) ∈ R to each configuration in
M. The goal is to find the optimal configuration µ such
that E(µ) is minimized overM. In a statistical physics
approach, an “inverse temperature” β is introduced, and
we can write a partition function

Z(β) =
∑
µ∈M

e−βE(µ), (1)

in such a way that the optimal cost is recovered as

min
µ∈M

E(µ) = − lim
β→+∞

∂ lnZ(β)
∂β

. (2)

This statistical physics reformulation is particularly pow-
erful when random combinatorial optimization problems
are considered. In a random optimization problem, the
set M depends on some parameters that are supposed
to be random. In this case, M is therefore an instance
of the problem in the space of parameters, and the av-
erage properties of the optimal solution are of a certain
interest. In particular, denoting by • the average over all
instancesM,

min
µ∈M

E(µ) = − lim
β→+∞

∂lnZ(β)
∂β

. (3)

The average appearing in the previous equation can be
tackled using the celebrated replica trick, which allowed
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the derivation of fundamental results for many relevant
random combinatorial optimization problems, like ran-
dom matching problems [2, 3, 6, 7] or the traveling sales-
man problem in its random formulation [2, 8].
In this paper, we will study a particular class of ran-

dom optimization problems, namely random Euclidean
matching problems (rEmps). In the rEmp, a set of
2N random points Ξ := {xi}i=1,...,2N is given on a cer-
tain d-dimensional Euclidean domain. We associate a
weight wij to the couple (xi,xj), typically in the form
wij = c (‖xi − xj‖) for some given function c. In the fol-
lowing, we will refer to the function c as the cost function
of the problem. We search therefore for the partition µ
of Ξ in N sets of two elements such that

E(µ) =
∑

(xi,xj)∈µ

wij (4)

is minimized. The object of interest is the optimal cost
averaged over the points’ positions,

min
µ
E(µ) = min

µ

∑
(xi,xj)∈µ

wij . (5)

In a variation of the problem, called random Euclidean
assignment problem (rEap), two sets of N random
points Ξ := {xi}i=1,...,N and Υ := {yi}i=1,...,N are given,
and we associate a weight wij to the couple (xi,yj), typ-
ically in the form wij = c (‖xi − yj‖). In this case, only
points of different sets can be coupled, and we search
therefore for a permutation π ∈ SN of N elements such
that

E(π) =
N∑
i=1

wi π(i) (6)

is minimized. As before, the main object of interest is
the average optimal cost,

min
π∈SN

E(π) = min
π∈SN

N∑
i=1

wi π(i). (7)
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A large physics literature exists about the properties of
rEmps and rEaps. In their seminal work, Mézard and
Parisi [3] proposed a mean-field approximation of both
the d-dimensional rEmp and the d-dimensional rEap,
obtaining the solution in the thermodynamical limit [3].
The finite-size corrections to the average optimal cost in
the mean-field model have been also evaluated [6, 8]. Us-
ing the replica approach, it has been later shown that
finite d corrections can be included in the mean-field so-
lution performing a diagrammatic expansion [7, 8], whose
resummation is, however, a challenging task. As an al-
ternative to the classical methods, in Ref. [9] a field the-
oretical approach has been proposed for the study of the
so-called quadratic rEap in any dimension. The new ap-
proach was based on the deep connections with optimal
transportation theory [10–12], and allowed the authors to
give an exact analytical prediction for the average opti-
mal cost for dimension d = 2 and its finite-size corrections
for dimension d > 2 [9, 13]. Moreover, the rEap in one
dimension on a compact domain has already been solved
in the case of convex and increasing cost function [9, 13–
17]. Despite the numerous results on mean-field models,
many properties of the corresponding Euclidean models
remain to be investigated and, moreover, few exact re-
sults are available in finite dimension. The availability
of analytical solutions is therefore of great importance
to check the validity of the approximate results obtained
correcting the mean-field theories, and the assumptions
adopted to obtain them.

In the present work, we will restrict ourselves to the
rEmp and the rEap in one dimension, with the purpose
of extending the analytical results of some previous inves-
tigations. Some results in the case of more general sup-
ports, as noncompact supports, and other general proper-
ties of the convergence rate can be found in the review of
Bobkov and Ledoux [12], in which the problem is treated
in the context of optimal transportation theory. Despite
their simple formulation, the one-dimensional rEap and
the one-dimensional rEmp have in general a nontrivial
analytical treatment and they are related to many dif-
ferent problems in mathematics, physics, and biology. In
Refs. [15, 16] it has been shown that the optimal as-
signment in the case of a strictly increasing cost func-
tion can be interpreted as a stochastic process on a com-
pact support, namely the Brownian bridge process, and
therefore as a quadratic field theory [9]. On the other
hand, if c(z) is concave, it can be easily proved that,
independently from the distribution adopted to gener-
ate the points, the optimal assignment is always planar
[14], in a sense that will be specified below. The rele-
vance of planar matching configurations both in physics
and in biology is due to the fact that they appear in the
study of the secondary structure of single stranded DNA
and RNA chains in solution [18]. These chains tend to
fold in a planar configuration, in which complementary
nucleotides are matched. The secondary structure of a
RNA strand is therefore a problem of optimal matching
on the line, with the restriction on the optimal configu-

ration to be planar [19, 20]. The statistical physics of the
folding process is not trivial and it has been investigated
by many different techniques [21, 22], also in presence
of disorder [20, 21, 23, 24]. One-dimensional Euclidean
matching problems can be adopted therefore as toy mod-
els for different processes, depending on the properties of
the cost function c, namely constrained Brownian pro-
cesses for convex strictly increasing cost function, and
folding processes for concave cost function.
The model. Before proceeding further, let us recall

some standard definitions of matching theory and rig-
orously specify our model. Given a generic graph G =
(V, E), with V set of vertices and E ⊆ V ×V set of edges,
a matching µ ⊆ E on G is a subset of edges of G such
that, given two edges in µ, they do not share a common
vertex [25]. A matching µ is said to be maximal if, for
any e ∈ E \ µ, µ∪ {e} is no longer a matching. Denoting
by |µ| the cardinality of µ, we define ν(G) := maxµ |µ|
the matching number of G, and we say that µ is maxi-
mum if |µ| = ν(G). A perfect matching (or 1-factor) is a
matching that matches all vertices of the graph. Every
perfect matching is also maximum and hence maximal.
A perfect matching is a minimum-size edge cover. We
will denote byM the set of perfect matchings.
Let us suppose now that a weight we ≥ 0 is assigned

to each edge e ∈ E of the graph G. We can associate to
each perfect matching µ a total cost

E(µ) :=
∑
e∈µ

we, (8)

and a mean cost per edge

ε(µ) := 1
ν(G)

∑
e∈µ

we. (9)

In the (weighted) matching problem we search for the
perfect matching µ such that the total cost in Eq. (8) is
minimized, i.e., the optimal matching µopt is such that

E(µopt) = min
µ∈M

E(µ). (10)

Once the weights are assigned, the problem can be solved
using efficient algorithms available in the literature [26,
27]. If the graph G is a bipartite graph, the matching
problem is said to be an assignment problem.
In random matching problems, the costs {we}e are

random quantities. In this case, the typical properties
of the optimal solution are of a certain interest, and in
particular the average optimal cost, E := minµ∈ME(µ),
where we have denoted by • the average over all possi-
ble instances of the costs set. The simplest way to in-
troduce randomness in the problem is to consider the
weights {we}e independent and identically distributed
random variables [3, 28]. In random Euclidean match-
ing problems, the graph G is supposed to be embedded
in a d-dimensional Euclidean domain Λ ⊆ Rd through
an embedding function Φ, in such a way that each ver-
tex v ∈ V of the graph is associated to a random Eu-
clidean point v 7→ Φ(v) ∈ Λ. In this case, the cost we
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of the edge e = (u, v) is typically a function of the dis-
tance of the images of its corresponding endpoints in Λ,
i.e., we = c [‖Φ(u)−Φ(v)‖] [7, 29]. Random Euclidean
matching problems are usually more difficult to investi-
gate, due to the presence of Euclidean correlations among
the weights. The purely random case with independent
edge weights plays the role of mean-field approximation
of the Euclidean case [7].

In the present paper, we will work on a specific toy
model in one dimension. We will consider the case in
which G = K2N complete graph with 2N vertices for the
rEmp, and G = KN,N complete bipartite graph with two
partitions of the same size N for the rEap. We will
assume the points to be independently and uniformly
generated both on the compact interval Λ = [0, 1] and
on the unit circumference, and we will introduce a gen-
eral class of cost functions, called here C-functions, that
determine a specific structure for the optimal matching
solution for a given instance in the rEap. More precisely,
once the two sets of points are labeled in increasing order
according to their position along the line, the optimal as-
signment can be respresented as a periodic label shift. As
particular application, we will consider the cost function
c(z) = zp. We will consider the finite size corrections to
the average optimal cost for p > 1 that had not been com-
puted previously and we will also study the case p < 0,
corresponding to a long-range optimal assignment. The
results obtained for the rEap will be extended to the
rEmp. The cost function c(z) = zp is of particular inter-
est because the optimal assignment can be interpreted as
a Gaussian stochastic process for p > 1 and, as we will
show, for p < 0. On the other hand, for 0 < p < 1 the so-
lution is planar, and therefore the rEap is a model for the
folding process mentioned above, the single parameter p
controlling the transition between different behaviors.

The paper is therefore subdivided in such a way to
present in Sec. II the case of the rEap and in Sec. III the
case of the rEmp. Finally, we will give our conclusions
in Sec. IV.

II. THE RANDOM EUCLIDEAN ASSIGNMENT
PROBLEM

With reference to the definitions given in the Introduc-
tion, in the assignment problem, we assume G = KN,N ,
the complete bipartite graph in which V = V1 ∪ V2,
V1∩V2 = ∅, |V1| = |V2| = N . In the rEap in one dimen-
sion, we consider two sets of points ΞN := {xi}i=1,...,N
and ΥN := {yj}j=1,...,N , independently generated with
uniform distribution density on Λ = [0, 1]; we associate
then the points in ΞN , respectively, ΥN , to the vertices
in V1, respectively, V2. We will assume that the points
are labeled in such a way that

0 ≤ x1 < x2 < · · · < xN ≤ 1, (11a)
0 ≤ y1 < y2 < · · · < yN ≤ 1. (11b)

A maximum matching µ ⊂ V1 × V2 uniquely corre-
sponds to a permutation π ∈ SN of the N elements
[N ] := {1, . . . , N}, in such a way that, if (i, j) ∈ µ,
j = π(i). We associate to π a matching cost and a mean
cost per edge, respectively, given by

EN (π) :=
N∑
i=1

w(xi, yπ(i)), (12a)

εN (π) := 1
N
EN (π). (12b)

In the previous expressions, the cost function w(xi, yj)
depends on the points’ positions xi and yj . As antici-
pated, we will restrict ourselves to cost functions in the
form [30]

w(xi, yj) := c (|xi − yj |) , c : Λ→ R. (13)

We are interested in the asymptotic behavior for N � 1
of the average optimal (mean) cost

εN := min
π
εN (π), (14)

where we have denoted by • the average over the points’
positions. We will show that the typical properties of
the solution strongly depend on the properties of the cost
function c(z). To study this dependency, we will assume
in particular

c(z) := zp, p ∈ R, z ∈ Λ. (15)

As we will show below, the properties of the optimal so-
lution will depend on the chosen value of p.

A. On the structure of optimal matching

We shall here discuss some general features of the op-
timal solution in a given instance at variance with the
cost function.

1. Preliminaries

Let us first introduce some preliminary definitions and
results.

Definition II.1. Given a set of n elements, we say that
a permutation π ∈ Sn of n elements belongs to Cn ⊆ Sn
if an integer number k exists such that 0 ≤ k < n and

π(i) = i+ k (mod n), i = 1, . . . , n. (16)

Observe that, for k 6= 0, a permutation π ∈ Cn is a
cyclic permutation having one cycle only. For k = 0 we
have the identity permutation, which has n cycles. The
set Cn ⊆ Sn is an Abelian subgroup corresponding to the
cyclic group of the n proper rotations in the plane which
leave a regular polygon with n vertices invariant. For
n = 2, C2 = {(1)(2), (1, 2)} = S2. The group C3 coincides
with the alternating group of even permutations A3.
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Definition II.2. Given a triple of three integers
(i, j, k) ∈ [n]3, [n] := {1, . . . , n}, we say that the or-
dered triple of integers (a, b, c) is cyclically co-oriented
with it when an even permutation π ∈ C3 exists such
that (π(a), π(b), π(c)) is in the same order of (i, j, k) re-
spect to the order relation of the integers.

The following Proposition, which appeared in Ref. [15],
will be fundamental in the following.

Proposition II.1. A permutation π ∈ Sn belongs to
Cn if, and only if, for any triple (i, j, k), the correspond-
ing triple (π(i), π(j), π(k)) is cyclically co-oriented with
(i, j, k).

Proof. If π ∈ Cn all the triples (π(i), π(j), π(k)) are cycli-
cally co-oriented with (i, j, k), due to the fact that all
permutations in Cn are ordering preserving.

For the converse, let us assume that all triples are cycli-
cally co-oriented with their image through the permuta-
tion π. Observe now that if for any couple (i, j) ∈ [n]2
we have π(i) − π(j) = i − j (mod n), then π ∈ Cn. To
prove this statement, we proceed by contradiction and
we assume that there exists at least a couple (i, j) ∈ [n]2
such that π(i)−π(j) 6= i− j (mod n). It follows that the
sequences

I = (i, i+ 1 (mod n), . . . , j), (17a)
J = (π(i), π(i) + 1 (mod n), . . . , π(j)) (17b)

have not the same cardinality, and therefore there must
exist a k such that either k ∈ I and π(k) 6∈ J or k 6∈ I
and π(k) ∈ J . By consequence, the triples (i, j, k) and
(π(i), π(j), π(k)) are not cyclically co-oriented, that is
in contradiction with the hypothesis and therefore the
theorem is proved.

2. C-functions

As anticipated, an assignment between two sets of N
points can be uniquely associated to a permutation of N
elements π ∈ SN . We will show below that the optimal
permutations belongs to CN ⊆ SN if the cost function
c(z) appearing in Eq. (13) satisfies the following property.

Definition II.3. We shall say that a function f : [0, 1]→
R is a C-function if, given 0 < z1 < z2 < 1, for any
η ∈ (0, 1− z2), η̂ ∈ (z2, 1)

f(z2)− f(z1) ≤ f(η + z2)− f(η + z1), (18a)
f(z2)− f(z1) ≤ f(η̂ − z2)− f(η̂ − z1). (18b)

Eq. (18a) implies that Ψη(z) = f(η + z) − f(z) is an
increasing function in the interval (0, 1−η) for any value
of η ∈ (0, 1). Moreover, if f is continuous, Eq. (18a) is
equivalent to convexity (see Appendix A).

Eq. (18b) implies that the function Φη(z) := f(η−z)−
f(z) is increasing in the interval (0, η) for any value of

η ∈ (0, 1). If f is differentiable, this fact can be written
as

f ′(η − z) + f ′(z) ≤ 0, z ∈ (0, η), η ∈ (0, 1), (19a)

which for η → 1 becomes

f ′(1− z) + f ′(z) ≤ 0. (19b)

This implies, for example, that the convex function

fα(x) = (x− α)2
, α ∈ R, (20)

is a C-function on Λ for α ≥ 1/2 only.

3. Optimal matching on a segment

Let us now discuss the structure of the optimal assign-
ment on the line. We start with the following Definition
to fix our nomenclature.

Definition II.4 (Crossing and planar matching). Let
us consider two sets of points ΞN = {xi}i=1,...,N and
ΥN = {yi}i=1,...,N on the interval Λ := [0, 1] and let
us assume that they are labeled in such a way that if
i < j then xi < xj and yi < yj . Then a matching
between ΞN and ΥN is said to be planar, or non-crossing
if, given the corresponding permutation π and any two
pairs of matched points (xi, yπ(i)) and (xj , yπ(j)), i <
j, the corresponding intervals are either disjoint, xi <
yπ(i) < xj < yπ(j), or nested, xi < xj < yπ(j) < yπ(i).
The matching is otherwise said to be crossing.

From the pictorial point of view, drawing the points on
a rightward oriented horizontal line, in a planar matching
it is always possible to draw semi-arcs in the upper semi-
plane joining the couples of matched points which do not
intersect, e.g.,

x1 x2 x3 x4y1 y2 y3 y4

It is well known that if the cost function c in Eq. (13)
is concave the optimal matching configuration is planar
[14, 19, 20].
In the following, we will restrict ourselves to two classes

of convex cost functions, namely C-functions and strictly
increasing convex functions. We can start studying in
detail the matching problem for N = 2, considering two
white points and two black points on the line. We can
assume, without loss of generality, that the first point
along the line is black. There are therefore 3 possible
orderings of the points, namely

x1 x2 y1 y2

A

x1 x2y1 y2

B

x1 x2y1 y2

C
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Each configuration allows two possible matchings,
namely π(i) = i and π(i) = i + 1 (mod 2) for i = 1, 2.
The following Propositions hold.

Proposition II.2. Given the assignment problem on the
interval Λ with N = 2, if the cost function c(z) : Λ → R

appearing in Eq. (13) is a C-function, then the optimal
matching is the crossing one, whenever a crossing match-
ing is available.

Proof. The proof of the Proposition is straightforward. In
the N = 2 case only two of the three possible configura-
tions allow a crossing solution, namely the configuration
a and the configuration c. The configuration a allows
the two possible matchings

x1 x2 y1 y2
A-I

x1 x2 y1 y2
A-II

With reference to the picture above,

Ea
I = c(y1 − x1) + c(y2 − x2), (21a)

Ea
II = c(y2 − x1) + c(y1 − x2). (21b)

But, c being a C-function,

c(y1 − x1)− c(y1 − x2) ≤ c(y2 − x1)− c(y2 − x2), (22)

where we have used Eq. (18a) with η = y2 − y1, and
therefore we have that Ea

I ≤ Ea
II. Observe that this result

for the a case holds for any continuous convex function
c(z) on Λ. Similarly, the configuration c allows the two
possible matchings

x1 x2y1 y2
C-I

x1 x2y1 y2
C-II

with corresponding costs

Ec
I = c(y1 − x1) + c(x2 − y2), (23a)

Ec
II = c(y2 − x1) + c(x2 − y1). (23b)

Again, c being a C-function,

c(y1 − x1)− c(y1 − x2) ≤ c(y2 − x1)− c(y2 − x2), (24)

where we have used Eq. (18b) with η = y2 − x1, and
therefore Ec

II ≤ Ec
I . This completes the proof.

Proposition II.3 (Convex increasing function). Given
the assignment problem on the interval Λ, if the cost func-
tion c(z) : Λ→ R appearing in Eq. (13) is a strictly con-
vex increasing function, then the optimal permutation in
the N = 2 case is the identity permutation π(i) = i,
i = 1, 2.

Proof. Let us first observe that a strictly increasing func-
tion on Λ cannot be a C-function, due to property in
Eq. (19). Moreover, due to the strict convexity hypothe-
sis, c(0) must be finite. We have already proved that, if
c(z) is convex, the optimal matching in the configuration
a is the ordered one. If we consider now the configuration
b, we have to evaluate two possible matchings, namely

x1 x2y1 y2
B-I

x1 x2y1 y2
B-II

In this case,

Eb
I = c(y1 − x1) + c(x2 − y2), (25a)

Eb
II = c(y2 − x1) + c(x2 − y1). (25b)

By hypothesis, the quantity c(y1 − x1) − c(x2 − y1) is
monotonously increasing respect to the variable y1 ∈
(x1, x2) and therefore

c(y1 − x1)− c(x2 − y1) ≤ c(x2 − x1)− c(0). (26)

Similarly, convexity implies that c(y2 − x1) − c(y2 − x2)
is increasing in its argument y2 and therefore

c(y2 − x1)− c(y2 − x2) ≥ c(x2 − x1)− c(0). (27)

It follows that

c(y1 − x1)− c(x2 − y1) ≤ c(y2 − x1)− c(y2 − x2)⇒
⇒ Eb

I ≤ Eb
II. (28)

If we finally consider the configuration c, we have

Ec
I = c(y1−x1)+c(x2−y2) ≤ c(y2−x1)+c(x2−y1) = Ec

II,
(29)

due to the fact that the cost function c is strictly increas-
ing.

If we consider now the N = 3 case, we can derive the
following fundamental Lemma.

Lemma II.4. Let c(z) : Λ → R, cost function for the
assignment problem on the interval Λ, be a C-function.
Then the optimal permutation π in the assignment prob-
lem for N = 3 belongs to the set C3.

Proof. For the proof of this Lemma, observe that, by
Proposition II.2, for N = 2 the crossing matching is the
optimal one whenever it is available, i.e., we can obtain
the optimal matching maximizing the number of cross-
ings given a certain configuration. In the assignment
problem with N = 3 “white” points to be matched with
N = 3 “black” points on the line, there are 1

2
(6

3
)

= 10
distinct configurations assuming that the first point is
always of a given type, e.g., black. Each configuration
allows six possible matching permutations. Let us start
with the following three configurations,
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A B C

All of them can be pictorially represented, in a compact
way, on a circumference as

For example, we can represent

1 2 3 1 2 3

A 12

3

1 2

3

In this representation, each matching on a configuration
on the line corresponds to a set of three chords joining the
points on the circumference, and a crossing in a match-
ing corresponds to an actual crossing between chords. We
will use this representation to evaluate all configurations
in a compact way. By Proposition II.2, we can order
the possible matchings using the fact that, applying a
transposition to a given permutation, if a new crossing
appears, then the new permutation has a lower cost. Pic-
torially we can order the six permutations as

where the arrows denote the transition from a given
matching to another one with lower cost, as a con-
sequence of a single transposition. In this case the
final, and cheapest, matching corresponds to the op-
timal permutation π(i) = i for the configuration a,
π(i) = i + 1 (mod 3) for the configuration b, and
π(i) = i+ 2 (mod 3) for the configuration c.
The following six configurations of points

D E F

G H I

can be treated similarly. In particular, all six configura-
tions can be represented as

We have therefore

This implies that, for each configuration, there are two
possible optimal permutations, namely π(i) = i or π(i) =
i + 1 (mod 3) for the configurations d, e, f, and π(i) =
i+1 (mod 3) or π(i) = i+2 (mod 3) for the configurations
g, h, i.
Finally, let us consider the configuration

J

In this case we have

There are three possible optimal permutations, namely
π(i) = i, π(i) = i+ 1 (mod 3) and π(i) = i+ 2 (mod 3).
Collecting our results, we have that, in the N = 3 case,

the optimal permutation π is such that π ∈ C3.

Proposition II.3 allows us to state the following The-
orem, that generalizes an analogous one proven by Bo-
niolo et al. [15] in the particular case of the cost func-
tion c(z) = zp with p > 1. An equivalent statement
for general convex increasing functions can be found, for
example, in Ref. [14].

Theorem II.5 (Optimal matching with convex increas-
ing cost function). Given the assignment problem on Λ,
if the cost function c(z) : Λ → R appearing in Eq. (13)
is a strictly convex increasing function, then the optimal
permutation is the identity permutation.

Proof. Let us assume by contradiction that the opti-
mal matching π is not the one corresponding to the
identity permutation. Therefore, there exists at least
a couple of matched pairs (i, π(i)), (j, π(j)) such that
i < j and π(i) > π(j). But, by Proposition II.2, this
implies that the cost can be decreased considering in-
stead the matched pairs (i, π(j)) and (j, π(i)), hence
the absurd and therefore the optimal matching is given
by the identity permutation π(i) = i for all values of
i = 1, . . . , N .

If the cost function is a C-function, the following The-
orem holds.
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Theorem II.6 (Optimal matching with C-function).
Given the assignment problem on the interval Λ, if the
cost function c(z) : Λ → R appearing in Eq. (13) is a
C-function, then the optimal permutation π is such that
π ∈ CN .
Proof. Given the optimal permutation π, because of
Lemma II.4, in every subset of three matched couples
they must be co-oriented. Therefore, because of Propo-
sition II.1, π ∈ CN .

B. Average properties of the optimal solution

In the following, we will apply the previous results to
the rEap with cost function c(z) = zp, p ∈ R \ [0, 1].
We will study the average properties of the optimal so-
lution assuming that the points are uniformly and inde-
pendently distributed on the unit interval. To stress the
dependency on p, we will denote the matching cost and
the mean cost per edge corresponding to the permutation
π ∈ SN by

E
(p)
N (π) :=

N∑
i=1
|xi − yπ(i)|p, (30a)

ε
(p)
N (π) := 1

N
E

(p)
N (π), (30b)

respectively. The average optimal cost will be given by

ε
(p)
N := min

π∈SN
ε

(p)
N (π). (31)

For this particular case, Theorem II.6 allows us to state
the following
Corollary II.7. Given the assignment problem on the
interval Λ with cost function c(z) = zp, denoting by π
the optimal permutation, then π(i) = i for p > 1, and
π ∈ CN for p < 0.
Proof. It is enough to observe that, for p > 1, the func-
tion c(z) = zp is a strictly increasing convex function,
and apply therefore Theorem II.5. On the other hand,
for p < 0, the function c(z) is a C-function, and we can
apply Theorem II.6.

If periodic boundary conditions are assumed (i.e., the
problem is considered on the unit circumference), we can
derive a similar result. Indeed, the assignment prob-
lem with cost function c(z) on the circumference can be
restated as an assignment problem on Λ with a modi-
fied cost function taking into account the periodicity. In
particular, the assignment problem on the circumference
with cost function c(z) can be thought as an assignment
problem on Λ with cost function

ĉ(z) = c(z)θ
(

1
2 − z

)
θ(z) + c(1− z)θ(1− z)θ

(
z − 1

2

)
,

(32)
where θ(x) is the Heaviside step function. In this case,
the following Corollary holds.

Corollary II.8. Let us consider the assignment problem
on the circumference with cost function c(z) = zp. De-
noting by π the optimal permutation, then π ∈ CN for
p < 0 or p > 1. In particular, for p = 1 there exists a
cyclic optimal solution.

Proof. As stated above, the assignment problem on the
circumference with cost function c(z) corresponds to the
assignment problem on Λ with cost function

ĉ(z) = zpθ(z)θ
(

1
2 − z

)
+ (1− z)pθ(1− z)θ

(
z − 1

2

)
.

(33)
The function above is a C-function for p < 0. Indeed,
it is easily seen that Ψη(z) = ĉ(η + z) − ĉ(z) is an in-
creasing function on the interval (0, 1− η) for any value
of η ∈ (0, 1), and therefore Eq. (18a) holds. Moreover,
the function Φη(z) = ĉ(η − z) − ĉ(z) is monotonically
increasing on the interval (0, η), and therefore Eq. (18b)
is satisfied. The proof for the p ≥ 1 case has been given
in Ref. [15].

1. Donsker’s theorem and the Brownian bridge process

In Corollary II.7 and Corollary II.8 we have proved
that, for p ∈ R \ [0, 1], the optimal permutation has the
form π(i) = i + k (mod N), for some k ∈ [N ] depend-
ing on the instance of our problem. In the case of open
boundary conditions (i.e., of the problem on the interval),
the optimal cost can be written as

min
π∈SN

ε
(p)
N (π) = min

k∈[N ]

1
N

N∑
i=1

∣∣xi − yi+k (mod N)
∣∣p , (34)

In particular, for p > 1, the optimal permutation of the
assignment problem on Λ is always π(i) = i, indepen-
dently from both the instance and the specific values of
p, and therefore the optimal cost is simply given by

min
π∈SN

ε
(p)
N (π) = 1

N

N∑
i=1
|xi − yi|p . (35)

These results imply that the optimal solution is related,
in theN →∞ limit, to a linear combination of two Brow-
nian bridge processes, a fact that follows from Donsker’s
theorem [31].

Theorem II.9 (Donsker). For any N ∈ N, there exists
a probability space ΩN such that we can define on it the
random variable XN := (Xi)i, XN : ΩN → ΛN , each com-
ponent Xi being a random variable uniformly distributed
on the unit interval Λ. Moreover, let us consider the cor-
responding N th empirical process,

FN (t,XN ) := 1
N

N∑
i=1

θ(t− Xi)− t. (36)
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Then we can find a sample-continuous Brownian bridge
process on Λ, defined on the same probability space ΩN ,
BN : Λ× ΩN → BN (t;ω), such that, for all ε > 0,

lim
N

Pr
[

sup
t∈[0,1]

∣∣∣√NFN (t,XN (ω))− BN (t;ω)
∣∣∣ > ε

]
= 0.

(37)

Donsker’s theorem expresses the (weak) convergence
of the process FN to a Brownian bridge process in the
N →∞ limit. The convergence rate has been studied by
Komlós et al. [32], that proved that

sup
0≤t≤1

∣∣∣√NFN (t,XN (ω))− BN (t;ω)
∣∣∣ = O

(
lnN√
N

)
(38)

almost surely [33].
Let ΞN = {xi}i ≡ XN (ω) be a realization of XN for

a given instance of the problem ω ∈ ΩN . The empirical
process FN is given by

FN (t,XN (ω)) = 1
N

N∑
i=1

θ(t− xi)− t (39)

Supposing now that the elements of ΞN are labeled in
such a way that xi < xj ⇔ i < j, we have

lim
t→x+

i

FN (t,XN (ω)) = i

N
− xi. (40)

Given therefore two realizations ω and ω̃, corresponding
to ΞN = {xi}i and ΥN = {yi}i ≡ XN (ω̃) respectively,
both generated as above, we can write

yj−xi = j − i
N

+ lim
t→x+

i

FN (t,XN (ω))− lim
t→y+

j

FN (t,XN (ω̃)).

(41)
Denoting by i = Nu + 1/2 and j = Nv + 1/2, u, v ∈ Λ,
and observing that, for large N and ε > 0,

Pr [|xi − u| > ε] ' exp
(
− Nε2

2u(1− u)

)
(42)

Donsker’s theorem allows us to write
√
N
(
yNv+1/2 − xNu+1/2 + u− v

)
N→+∞−−−−−→ B(u;ω)− B(v; ω̃), (43)

where the limit is intended in probability. This results
implies that we can write the arguments of the sums in
Eq. (34) and Eq. (35) in terms of Brownian bridge pro-
cesses in the large N limit.

2. Open boundary conditions

To be more specific, we start analyzing the rEap on
the interval, assuming a cost function c(z) = zp with
p ∈ R \ [0, 1].

a. The p > 1 case. Many aspects of the rEap in
one dimension for p > 1 have been analyzed in Refs. [14–
16]. As observed above, the optimal permutation in this
case is always the identity one, π(i) = i. Denoting by

ϕi := yi − xi, (44)

we can write, for any instance and any value of N ,

min
π∈SN

ε
(p)
N (π) = 1

N

N∑
i=1
|ϕi|p. (45)

From Donsker’s theorem, we know that in the N → +∞
limit,

φ(s) :=
√
NϕNs+1/2

N→+∞−−−−−→ B(s;ω)− B(s; ω̃), (46)

where we have introduced the new variable s such that
i = Ns + 1/2. The authors of Refs. [15, 16] used this
correspondence between the Brownian bridge process and
the optimal solution of the Euclidean assignment problem
to derive the expression of the average optimal cost and
the correlation function in the N → +∞ limit. They
obtained

N
p
2 ε

(p)
N =

Γ
(
1 + p

2
)

p+ 1 +O

(
1
N

)
, (47)

whereas the correlation function has been studied in
Refs. [15]. Here we derive

cp(r) := 1
N (r)

1∫∫
0

φ(s)φ(t)δ (|s− t| − r) d sd t

=
1∫∫
0

φ(s)φ(t)− φ(s)φ(t)
N (r) δ (|s− t| − r) d sd t

= 1
3 (1− r)2

, r ∈ Λ, (48)

where

N (r) :=
1∫∫
0

δ (|s− t| − r) d sd t = 2(1− r). (49)

The correlation function has been obtained using the fol-
lowing fundamental property of the Brownian bridge pro-
cess,

B(s;ω)B(t;ω) = min{s, t} − st. (50)

In the following, we derive the finite size corrections to
the asymptotic cost in Eq. (47), through a straightfor-
ward computation on the optimal matching solution and
following the approach of Boniolo et al. [15]. Let us first
observe that the probability of finding xk in the interval
(x, x+ dx) is

Pr [xk ∈ dx] = B(k;N, x)k dx
x

, k = 1, . . . , N, (51)
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where we have introduced the binomial distribution

B(k;N, p) :=
(
N

k

)
pk(1− p)N−k. (52)

In Eq. (51) we have used the notation xk ∈ dx ⇔ xk ∈
(x, x + dx). Due to the fact that the random variables
xk and yk are independent, we can write

Pr[ϕk ∈ dϕ] = dϕ
(
N

k

)2
k2×

×
1∫∫
0

δ(ϕ− y + x)(xy)k−1[(1− x)(1− y)]N−k dx d y.

(53)

Eq. (53) allows in principle the calculation of the average
optimal cost for any value N . For example, in the p = 2
case, we obtain

min
π
ε

(2)
N (π) = 1

3(1 +N) = 1
3N −

1
3N2 + o

(
1
N2

)
. (54)

The calculations, however, greatly simplify in the N →
+∞ limit. Introducing the variable φ(s) :=

√
NϕNs+1/2,

Eq. (53) can be written, up to higher order terms, as

Pr[φ(s) ∈ dφ] =

= dφ e−
φ2

4s(1−s)

2
√
πs(1− s)

{
1 + s(1− s) + 1

8Ns(1− s) + 7s(1− s)− 2
8Ns2(1− s)2φ

2

+ 1− 5s(1− s)
32Ns3(1− s)3φ

4 + o

(
1
N

)}
, (55)

see Appendix B. As expected, the leading term is the
distribution of a Brownian bridge process on the domain
Λ [34]. From Eq. (55) we can easily obtain

N
p
2 ε

(p)
N =

1∫
0

|φ(s)|p d s

= Γ (1 + p/2)
p+ 1

(
1− 1

N

p(p+ 2)
8

)
+ o

(
1
N

)
. (56)

The expression of the leading term in Eq. (56) has been
numerically verified, for example, in Refs. [15, 16]. In
Fig. 2a we compare the results of our simulations with
the theoretical prediction given in Eq. (56).
b. The p < 0 case. Let us now consider the p < 0

and let us define

1√
N
φ

(N)
t (s) :=

= yN [s+t (mod 1)]+1/2 − xNs+1/2 − σ(s, t), (57)

where Ns+ 1/2 = k ∈ [N ] and Nt ∈ [N ] and

σ(s, t) := [s+ t (mod 1)]− s, s, t ∈ Λ. (58)

Corollary II.7 states that, for a given instance of our
problem, the optimal solution corresponds to a certain
value t such that

min
π
ε

(p)
N (π) =

= 1
N

N∑
k=1

∣∣∣∣σ(k − 1/2

N
, t

)
+ 1√

N
φ

(N)
t

(
k − 1/2

N

)∣∣∣∣p .
(59)

From Donsker’s theorem, we have

φ
(N)
t (s) N→+∞−−−−−→ φt(s) := B(s;ω)− B (s+ t (mod 1); ω̃) ,

(60)
and the optimal cost can be written, in the large N limit,
as

1
N

N∑
k=1

∣∣∣∣σ(k − 1/2

N
, t

)
+ 1√

N
φ

(N)
t

(
k − 1/2

N

)∣∣∣∣p N�1−−−→

1∫
0

∣∣∣∣∣σ(s, t) + φ
(N)
t (s)√
N

∣∣∣∣∣
p

d s, (61)

for some value of t depending both on p and on the spe-
cific instance of the problem. The value of t for the opti-
mal solution can be found by minimizing the expression
above respect to t. We proceed perturbatively, observing
that

lim
N

1∫
0

∣∣∣∣∣σ(s, t) + φ
(N)
t (s)√
N

∣∣∣∣∣
p

d s = tp(1−t)+t(1−t)p, (62)

which is minimized by t = 1/2. To evaluate the nontrivial
finite-size corrections, we assume therefore

t := 1
2 + τ√

N
, (63)

where τ depends both on p and on the instance of the
problem. Performing a large N expansion, the cost can
be written as

1∫
0

∣∣∣∣∣σ(s, t) + φ
(N)
t (s)√
N

∣∣∣∣∣
p

ds

= 1
2p + p

1∫
0

sign (1/2− s)
2p−1
√
N

φ
(N)
1/2

(s) d s

−
pτ
(
τ + φ1/2 (1/2)

)
2p−2N

+ p(p− 1)
2p−1N

1∫
0

(
τ + φ1/2(s)

)2 d s

+ τp

1∫
0

sign (1/2− s)
2p−1N

∂tφt(s)|t= 1
2

d s+ o

(
1
N

)
. (64)
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Here and in the following we adopt the convention
sign(0) = 1. Observe that, due to Eq. (38), we can
neglect the corrections to the asymptotic limit given in
Eq. (60) in all terms appearing in the expansion above,
except in the second one, that must be treated dif-
ferently when the average will be performed, due to
the different scaling of the coefficient. Being φt(s) =
B(s;ω) − B (s+ t (mod 1); ω̂), we can formally write
in the last term ∂tφt(s) = −∂tB (s+ t (mod 1), ω̂) =
−∂sB (s+ t (mod 1), ω̂) and therefore, after an integra-
tion by parts, the expression above becomes

1∫
0

∣∣∣∣∣σ(s, t) + φ
(N)
t (s)√
N

∣∣∣∣∣
p

d s =

= 1
2p −

pτ
(
τ + φ1/2 (1/2) + φ1/2(0)

)
2p−2N

+ p(p− 1)
2p−1N

1∫
0

(
τ + φ1/2(s)

)2 d s

+ p

2p−1
√
N

1∫
0

sign (1/2− s)φ(N)
1/2

(s) d s+ o

(
1
N

)
. (65)

Minimizing respect to τ , we obtain, up to higher terms,

τ = −p− 1
p− 3

1∫
0

φ1/2(s) d s+
φ1/2 (1/2) + φ1/2(0)

p− 3 . (66)

We have verified our assumption in Eq. (63) and therefore
Eq. (66). In particular, Eq. (66) implies τ = 0 and [35]

τ2 = p2 − 5p+ 7
6(p− 3)2 . (67)

The results of our numerical simulations, given in the
inset in Fig. 2b, show a good agreement between the
prediction in Eq. (67) and simulations.

To obtain the average optimal cost, we have to sub-
stitute Eq. (66) into Eq. (65), and then average over the
possible realizations, using the fact that, as consequence
of Eq. (50), the following property holds:

φ1/2(s)φ1/2(t) = min {s, t} − st

+ min
{
s+ sign (1/2− s)

2 , t+ sign (1/2− t)
2

}
−
(
s+ sign (1/2− s)

2

)(
t+ sign (1/2− t)

2

)
. (68)

The average of the last term in Eq. (65) requires the
evaluation of φ(N)

1/2
(s) that must be performed, as antici-

pated, including the corrections to the limiting Brownian
bridge distribution. Introducing for the sake of brevity
ς = s+ σ(s, 1/2), we get

Pr[φ(N)
1/2

(s) ∈ dφ] =
exp

(
− φ2

2s(1−s)+2ς(1−ς)

)
dφ

√
2π
√
s(1− s) + ς(1− ς)

×
[
1 + s− ς√

N

(
(s+ ς − 1)2

(s(1− s) + ς(1− ς))2φ

−1− (s− ς)2 − 3s(1− s)− 3ς(1− ς)
3(s(1− s) + ς(1− ς))3 φ3

)
+ o

(
1√
N

)]
,

(69)

which provides

φ
(N)
1/2

(s) = −σ(s, 1/2)√
N

. (70)

Collecting the results above, we finally obtain

ε
(p)
N = 1

2p

[
1 + 1

3N
p(p− 2)(p− 4)

p− 3

]
+ o

(
1
N

)
. (71)

We verified the previous formula numerically. The nu-
merical results show a good agreement with the theoret-
ical prediction in Eq. (71), see Fig. 2b.
Given the optimal permutation π, such that π(i) =

i+ k (mod N), the correlation function for the matching
field

µi = yπ(i) − xi
N→+∞−−−−−−→
i=Ns+1/2

µ(s) =
{

1
2 if 0 ≤ s < 1

2
− 1

2 if 1
2 < s ≤ 1,

(72)
is easily calculated as

cp(r) := 1
N (r)

1∫∫
0

µ(s)µ(t)δ (|s− t| − r) d sd t

=
{

3
4 −

1
2(1−r) if 0 ≤ r < 1

2
− 1

4 if 1
2 < r ≤ 1.

(73)

More interestingly, we introduce the correlation function
for the field

µ̂i :=
√
N

[
yπ(i) − xi −

sign (N − k − i)
2

]
. (74)

For i = Ns + 1/2, in the N → ∞ limit keeping s fixed,
we have

µ̂Ns+1/2
N→+∞−−−−−→ φ1/2(s) + τ =: µ̂(s). (75)

For 0 ≤ r ≤ 1,

ĉp(r) :=
1∫∫
0

µ̂(s)µ̂(t)
N (r) δ (|s− t| − r) d sd t

=
1∫∫
0

(
τ + φ1/2(s)

) (
τ + φ1/2(t)

)
N (r) δ (|s− t| − r) d sd t
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Figure 1. Correlation functions cp(r) (inset) and ĉp(r) for the
assignment problem on the interval Λ with p < 0, as defined in
Eq. (73) and Eq. (76), respectively. Observe that a finite-size
effect appears for r → 0 in the numerical data for ĉp(r). In
all cases, the theoretical predictions are represented in solid
line.

=
{
p2−6p+10
6(p−3)2 + 10r2−30r+17

6(p−3)(1−r) r −
pr(1−r)
p−3 if 0 ≤ r ≤ 1/2,

p2−3p+1
6(p−3)2 − 3p−4

3(p−3)r + 3p−5
3(p−3)r

2 if 1/2 < r ≤ 1.
(76)

Observe that

lim
p→−∞

ĉp(r) = 1
6 − r(1− r), (77)

that coincides with the correlation function for the as-
signment problem with p = 2 on the circumference [9, 16].
This fact is not a coincidence. Indeed, for p → −∞, we
have that (see below)

lim
p→−∞

τ = −
1∫

0

φ1/2(s) d s. (78)

By comparison with Eq. (81) below, it will be clear that
µ̂(s) for p → −∞ coincides with the solution of the as-
signment problem for p = 2 on the circumference in which
one set of points is translated by 1/2. In Fig. 1 we compare
the predictions above for cp and ĉp with our numerical
results.

3. Periodic boundary conditions

Corollary II.8 states that, in the case of periodic
boundary conditions, both for p > 1 and for p < 0, the
optimal matching can be found searching for the optimal
permutation in the set CN . The calculation above for the
assignment problem on the interval, however, has to be

slightly modified, due to the fact that the cost function
is replaced by the one in Eq. (32), whereas Eq. (43) still
holds. In particular, the average optimal cost has the
form given in Eq. (61), with σ(s, t) ≡ σ(t) = t ∈ [0, 1),
value of the global shift depending on the specific in-
stance and on the value of p. The optimal cost can be
written, in the large N limit, as

1∫
0

[∣∣∣∣t+ φt(s)√
N

∣∣∣∣ (mod 1/2)
]p

d s, (79)

for a certain value of t obtained by minimization.
a. The p > 1 case. The p > 1 case has been ana-

lyzed in Refs. [9, 15, 16]. In this case at the leading order
we obtain t = 0 and therefore t = o(1). An explicit ex-
pression of t is known for p = 2 and p → +∞ only. In
general, we can assume that t = τ/

√
N + o (1/

√
N). The

value of τ is obtained minimizing, in the N → +∞ limit,
the expression

1∫
0

|τ + φ0(s)|p d s. (80)

For p = 2 we have [15, 16]

ε
(2)
N = 1

6N + o

(
1
N

)
, (81a)

τ = −
1∫

0

φ0(s) d s. (81b)

Unfortunately, no general expression for τ is available to
our knowledge. Numerical simulations suggests that the
average optimal cost scales as

ε
(p)
N = 1

N
p
2

[
Cp + Dp

N
+ o

(
1
N

)]
. (82)

In Fig. 2c and in Table I we present our numerical results
for the average optimal cost and its finite-size corrections
for the assignment problem on the circumference in the
p > 1 case. The data have been obtained using Eq. (82)
to extrapolate the N → +∞ limit for both Cp and Dp.
In Ref. [13] the p = 2 case was carefully analyzed using
a particular scaling ansatz, and the scaling in Eq. (82)
was numerically verified. In particular, they obtained
C2 = 0.166668(3) and D2 = −0.1645(13). We refer to
Ref. [16] for further discussion on the correlation function
on the circumference.
b. The p < 0 case. For p < 0 a more detailed com-

putation can be performed. At the leading order, the
minimum is obtained for t = 1/2 + O (1/

√
N), as in the

case of open boundary condition. Under the assumption
t = 1/2 + τ/

√
N, we obtain

1∫
0

1
2 −

∣∣∣τ + φ
(N)
1/2+τ/√N(s)

∣∣∣
√
N

p d s =
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and we compare them with our prediction given in Eq. (56).
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(b) Numerical results for the average optimal cost in the as-
signment problem on Λ with p < 0. The theoretical predictions
are given in Eq. (71) and they are represented in solid lines. In
the upper inset, numerical results for τ2 for different values of
p, obtained using two-parameters fitting function in the form
f(N) = α+ β/N, α being the numerical estimation for τ2. We

compare them with the prediction in Eq. (67).
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(c) Numerical results for the average optimal cost (inset) and
its finite size corrections in the assignment problem with p > 1
on the circumference. We fitted the numerical results obtained
for different values of N at fixed p using the fitting function in

the form given in Eq. (82). See also Table I.
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(d) Numerical results for the average optimal cost and its finite
size corrections in the assignment problem with p < 0 on the
circumference. We present our numerical results and we com-
pare them with our theoretical predictions for the asymptotic

behavior given in Eq. (85) (solid lines).

Figure 2. Numerical results for the assignment problem. Error bars are typically smaller than the markers in the figures.

= 1
2p −

p

2p−1
√
N

1∫
0

∣∣τ + φ1/2(s)
∣∣d s − p

2p−1
√
N

1∫
0

(
φ

(N)
1/2

(s)− φ1/2(s) +
τ ∂tφt(s)|t=1/2√

N

)
d s
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p Cp Dp
1.1 0.2972(2) -0.103(5)
1.2 0.2756(2) -0.114(6)
1.3 0.2561(3) -0.116(6)
1.4 0.2392(3) -0.126(8)
1.5 0.2231(4) -0.122(9)
1.6 0.2098(2) -0.134(5)
1.7 0.1976(2) -0.143(5)
1.8 0.1864(2) -0.146(4)
1.9 0.1756(2) -0.142(4)
2.0 0.1671(3) -0.161(8)
2.1 0.1580(1) -0.154(3)
2.5 0.1305(2) -0.166(4)
3.0 0.1067(2) -0.178(6)
4.0 0.0788(3) -0.200(7)
5.0 0.0648(3) -0.226(7)
6.0 0.0580(4) -0.26(1)
7.0 0.0563(7) -0.31(2)
8.0 0.057(1) -0.35(2)
9.0 0.061(2) -0.43(4)
10 0.066(2) -0.489(4)

Table I. Numerical results for the average optimal cost and
its finite size corrections in the assignment problem on the
circumference. For each value of p, the average optimal cost
has been evaluated averaging over at least 104 instances with
size between N = 10 and N = 2.5 · 103. Subsequently, a fit
has been performed using Eq. (82) to extract Cp and Dp.

+ p(p− 1)
2p−1N

1∫
0

(
τ + φ1/2(s)

)2 d s+ o

(
1
N

)
. (83)

In the expression above we took into account that
φ

(N)
1/2

(s)−φ1/2(s) is infinitesimal quantity for large N , due
to Eq. (38). Moreover,

∫ 1
0 ∂tφt(s) d s = ∂t

∫ 1
0 φt(s) d s =

0, see Eq. (60). We have then that the third contribution
in the previous equation is O(1/N). Minimizing respect
to τ , we obtain, up to higher order terms,

1∫
0

sign
(
τ + φ1/2(s)

)
d s = 0, (84)

and therefore the optimal value τφ of τ depends on the in-
stance φ1/2, i.e., on the properties of the Brownian bridge
process, and not on p. The average optimal cost is

ε
(p)
N = 1

2p −
pλ1

2p−1
√
N

+ p(p− 1)λ2

2p−1N
+ o

(
1
N

)
. (85a)

where the quantities

λ1 :=
1∫

0

∣∣τφ + φ1/2(s)
∣∣d s = 0.3217(5), (85b)

λ2 :=
1∫

0

(
τφ + φ1/2(s)

)2 d s = 0.1717(5), (85c)

are fixed numbers related to the Brownian bridge pro-
cess only, which we evaluated numerically. We numeri-
cally verified Eq. (85). Our numerical results are given
in Fig. 2d and they show a good agreement with the the-
oretical prediction.

III. THE RANDOM EUCLIDEAN MATCHING
PROBLEM

In the rEmp in one dimension we associate to the set
of 2N vertices of the complete graph K2N a set of 2N
points ΞN := {xi}i=1,...,2N independently and randomly
generated on Λ with uniform distribution. Again, we will
assume that the points are labeled in such a way that
0 ≤ x1 < x2 < · · · < x2N ≤ 1. In this case, a matching µ
is any partition of Ξ2N in subsets of two elements only,
its cardinality being N . We will consider the following
matching cost associated to µ,

ε
(p)
N (µ) := 1

N

∑
(i,j)∈µ

|xi − xj |p, p ∈ R. (86)

As in the assignment problem, we are interested in the
average

ε
(p)
N := min

µ
ε

(p)
N (µ), (87)

and in its asymptotic behavior for N → +∞.

A. Open boundary conditions

For p > 1, the optimal solution on the interval has a
simple structure. In particular, the couple (xi, xj), i < j,
belongs to the optimal matching if, and only if, i is odd
and j = i + 1. This statement follows directly from the
direct inspection of the N = 2 case. We have indeed that
given the generic configuration

x1 x2 x3 x4

the minimum cost configuration has always the structure

x1 x2 x3 x4

The study of the properties of the optimal matching is
reduced therefore to the study of spacings between suc-
cessive random points on Λ. The optimal cost for p > 1
is therefore given by

min
µ
ε

(p)
N (µ) = 1

N

N∑
i=1

ϕp2i−1, ϕi := xi+1 − xi. (88)

Let us first observe that the distribution of the ordered
set x = (x1, . . . , x2N ) is given by

ρN (x) = (2N)!
2N∏
i=0

θ(xi+1 − xi), x0 ≡ 0, x2N+1 ≡ 1.

(89)
It follows that

%N (ϕ0, . . . , ϕ2N ) = (2N)!
2N∏
i=0

θ(ϕi) for
2N∑
i=0

ϕi = 1.

(90)
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In particular, this implies that for the spacing ϕl we have

%
(1)
N (ϕl) = (2N)!

 2N∏
k=0
k 6=l

+∞∫
0

dϕk

 δ
 2N∑
j=0

ϕj − 1



= (2N)!i2N lim
ε→0+

eε(1−ϕl)
+∞∫
−∞

e−iλ(1−ϕl)

(λ+ iε)2N
dλ
2π

=
{

2N(1− ϕl)2N−1 for 0 < ϕl < 1,
0 otherwise.

(91)

Observe that the shape of the distribution is not depen-
dent on l. Moreover,

ε
(p)
N ≡ ϕ

p
l = Γ(2N + 1)Γ(1 + p)

Γ(2N + 1 + p)

= 1
Np

Γ(p+ 1)
2p

[
1− p(p+ 1)

4N + o

(
1
N

)]
. (92)

The joint density distribution %(2) of the couple (ϕi, ϕj),
i 6= j, can be similarly evaluated. As proven, for example,
in Ref. [36], we have that

%
(2)
N (ϕi, ϕj) =

= 2N(2N−1)(1−ϕi−ϕj)2(N−1)θ(ϕi)θ(ϕj)θ(1−ϕi−ϕj),
(93)

implying

ϕiϕj = 1
(2N + 1)(2N + 2) . (94)

Observe once again that no dependence on i and j ap-
pears on the right hand side of the previous equations.
It is clear that in this case ϕi ∼ N−1. We introduce the
rescaled variables φi = 2Nϕi, whose asymptotic distri-
bution, for 0 ≤ φi ≤ 2N , is given by

%̂
(1)
N (φi) = e−φi

[
1− φi(φi − 2)

4N + o

(
1
N

)]
. (95a)

Similarly, the joint probability distribution for φi, φj ≥ 0,
0 ≤ φi + φj ≤ 2N , is

%̂
(2)
N (φi, φj) =

= e−φi−φj
[
1− (φi+φj)2−4(φi+ φj)+2

4N + o

(
1
N

)]
.

(95b)

We can therefore write

φi = 1− 1
2N + o

(
1
N

)
, (96a)

φiφj = 1− 3
2N + o

(
1
N

)
. (96b)

This implies

lim
N

(
φiφj − φi φj

)
= 0. (97)

For p < 0 it is easily seen that, for N = 2, the optimal
solution is always the crossing one, i.e., in the form

x1 x2 x3 x4

This can be proved again by direct inspection, in the
spirit of the analysis in Proposition II.2 and observing
that a crossing solution is always possible. It follows that
the optimal matching on a set of 2N points on the in-
terval is given by the set of couples {(xi, xi+N )}i=1,...,N ,
such that, in the pictorial representation above, each arc
corresponding to a matched coupled crosses all the re-
maining N − 1 arcs. The optimal cost per edge is

min
µ
ε

(p)
N (µ) = 1

N

N∑
i=1

(xi+N − xi)p . (98)

The analysis proceeds as in the p > 1 case. To evaluate
the average optimal cost, denoting by ϕl := xl+N − xl,
we have

Pr[ϕl ∈ dϕ] = B(N ; 2N,ϕ)θ(ϕ)θ(1− ϕ)N dϕ
ϕ

(99)

which is the probability that given 2N points at random
N of them are in an interval of length ϕ. Of course the
distribution of ϕl does not depend on l. It follows that,
for any real γ such that N > −γ,

ϕγl = Γ(2N + 1)Γ(N + γ)
Γ(N)Γ(2N + γ + 1) = 1

2γ + γ

2γ+2
γ − 3
N

+o

(
1
N

)
,

(100)
and therefore, for p < 0 and N > −p,

ε
(p)
N = Γ(2N + 1)Γ(N + p)

Γ(N)Γ(2N + p+ 1) = 1
2p + p(p− 3)

2p+2N
+ o

(
1
N

)
.

(101)
For N � 1 expectation values in the distribution given
by Eq. (99) can be evaluated by the saddle-point method.
By performing the shift around the saddle point value

ϕl = 1
2 + 1

2
√
N
φl, (102)

we recover the distribution for φl as

Pr[φl ∈ dφ] '

' e−φ2

√
π

[
1− 1√

N
φ− 4φ4 − 8φ2 + 1

8N + o

(
1
N

)]
dφ.

(103)

For example, the evaluation of
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ϕγl = 1
2γ

(
1 + 1√

N
φl

)γ
' 1

2γ

[
1 + γ√

N
φl + γ(γ − 1)

2N φ2
l + o

(
1
N

)]
(104)

will provide the result given in Eq. (100), because

φl =− 1
2
√
N

+ o

(
1
N

)
(105a)

φ2
l = 1

2 −
1

4N + o

(
1
N

)
. (105b)

For the evaluation of correlations, we have, for 0 ≤ l <
k ≤ N ,

Pr[xl ∈ dx, xl+N ∈ dx′, xk ∈ d y, xk+N ∈ d y′] =

= dxdx′ d y d y′(2N)!x
l−1(y − x)k−l−1(x′ − y)N+l−k−1

Γ(l)Γ(k − l)Γ(N + l − k)

× (y′ − x′)k−l−1(1− y′)N−k

Γ(k − l)Γ(N − k + 1)
× θ(x)θ(y − x)θ(x′ − y)θ(y′ − x′)θ(1− y′). (106)

We get, therefore,

ϕlϕk = N(N + 1)− |k − l|
(2N + 2)(2N + 1) . (107)

Eq. (107) suggests the introduction of the variables x, y,
such that Nx = l, Ny = k, and, with reference to
Eq. (102), of the field variable φ(x) := φNx. We have
that in the large N limit,

φ(x)φ(y)− φ(x)φ(y) =

= 1− 2|y − x|
2 + 3|y − x|

2N +O

(
1
N2

)
. (108)

In Fig. 3a and Fig. 3b we compare our theoretical results
with the output of numerical simulations for the p > 1
and the p < 0 case, respectively.

B. Periodic boundary condition

The case of periodic boundary condition for p > 1 can
be easily obtained. Observe indeed that, in the case of
2N = 4 points on the circumference, given the crossing
matching, we can always lower the cost considering one
of the noncrossing solutions, i.e.,

a

b

c

d

where the arrows denote the transition from a given
matching to another one with lower cost. Indeed, with
reference to the figure above, denoting by a, b, c, and d
the length of the four arcs with extremes the considered
points, let us suppose, without loss of generality, that
a+b ≤ 1/2 and b+c ≤ 1/2. Then, ap+cp < (a+b)p+(b+c)p
for p > 1. Moreover, given the matching

a

b

c

d

if a + b + c ≤ 1/2, then ap + cp ≤ (a + b + c)p + bp, i.e.,
there are no nested matchings in a half-circumference.
Applying these rules iteratively to the case of 2N points
on the circumference, we find that, ordering the points
according to a reference orientation on the circumference,
we have two possible optimal matching configurations,
namely, for i = 1, . . . , N , the 2i-th point is associated
either to the (2i+ 1 (mod 2N))-th point, or to the (2i−
1 (mod 2N))-th point. Pictorially,

min
[

,

]
(109)

The distribution of 2N spacings {ϕi} generated by 2N
random points on the circumference is given by

%(ϕ1, . . . ϕ2N ) = Γ(2N)δ
( 2N∑
i=1

ϕi − 1
)

N∏
i=1

θ(ϕi). (110)

We assume here that we choose one of the points as
origin, and an orientation on the circumference, such
that the intervals ϕi are labeled accordingly. Let
p(Φ1, . . . ,Φ2N ) be the probability for the quantities Φi :=
Npϕpi , which can be straightforwardly obtained from
Eq. (110). The variables {Φi}i have mean

µ := Φi = NpΓ(2N)Γ(p+ 1)
Γ(2N + p) , (111a)

and variance

(Φi − µ)2 =

= N2p
[

Γ(2N)Γ(1 + 2p)
Γ(2N + 2p) − Γ2(2N)Γ2(1 + p)

Γ2(2N + p)

]
= Γ(2p+ 1)− Γ2(p+ 1)

22p + o(1) ≡ σ2 + o(1). (111b)

The variables are, however, not independent, due to the
overall constraint

∑
i Φ1/p

i = N . We have that, for i 6= j,

(Φi − µ) (Φj − µ) =

= N2pΓ2(1 + p)Γ(2N)
[

1
Γ(2N + 2p) −

Γ(2N)
Γ2(2N + p)

]
= −p

2Γ2(1 + p)
22p+1N

+ o

(
1
N

)
= ρ

N
+ o

(
1
N

)
. (111c)

The optimal cost in the matching problem on the circum-
ference with p > 1 is given by

ε
(p)
N = min

{
1

N1+p

N∑
i=1

Φ2i−1,
1

N1+p

N∑
i=1

Φ2i

}
. (112)
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(a) Numerical results for the finite size corrections to the av-
erage optimal cost (inset) in the matching problem with p > 1
on Λ. We compare our numerical results with our numerical

prediction given in Eq. (92) (solid lines).
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(b) Numerical results for average optimal cost in the matching
problem on Λ with p < 0. The theoretical predictions (solid
lines), for any value of N > −p, are given by Eq. (101). Ob-

serve that for N � 1 2pε(p)
N is linear in N−1 (inset).
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(c) Numerical results for average optimal cost in the matching
problem on the circumference with p > 1. The theoretical
predictions (solid lines) for the asymptotic behavior are given
by Eq. (113). Observe that for N � 1 the corrections to the

asymptotic cost scale as 1/
√
N (inset).
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(d) Numerical results for average optimal cost in the matching
problem on the circumference with p < 0. The theoretical
predictions (solid lines) are given by Eq. (115) and they are
correct for all values of N > −p, as expected. Observe that for

N � 1 2pε(p)
N is linear in 1/
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N (inset).

Figure 3. Numerical results for the matching problem. Error bars are typically smaller than the markers in the figures.

Using the results given in Appendix C, we have in this
case that

(2N)pε(p)
N =

= Γ(p+ 1) +
√

Γ(2p+ 1)− Γ2(p+ 1)
πN

+ o

(
1√
N

)
.

(113)

In Fig. 3c we compare our numerical results with the
theoretical prediction in Eq. (113).
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In the p < 0 case, as in the case of open boundary
conditions, we have that, given four points on the cir-
cumference, the optimal solution is always the crossing
one. Let us consider indeed

a

b

c

d

a

b

c

d

a

b

c

d

and let us assume, without loss of generality, that a+b ≤
1/2 and b + c ≤ 1/2. We have that ap + cp ≥ (a + b)p +
(b + c)p. With reference to the figure above, if d ≥ 1/2,
then we also have bp + (a+ b+ c)p > (a+ b)p + (b+ c)p,
where we have used the fact that f(x, a) = xp − (x+ a)p
is a decreasing function for x > 0 and a > 0. If
d = 1 − a − b − c ≤ 1/2, then b ≤ d and therefore we
have bp+dp ≥ 2dp ≥ (a+b)p+(b+c)p. This fact implies
that the minimum cost matching is obtained coupling
the ith point to the i + N (mod 2N) point on the cir-
cumference, where the points are supposed to be ordered
according to a reference orientation on the circumference.
For example, we will have that

To find the average optimal cost, observe that, fixing the
origin of our reference system in the point i, the distance
of the point i + N (mod N) from the ith point on the
circumference is distributed as

Pr[ϕi ∈ dϕ] = Nθ(ϕ)θ
(

1
2 − ϕ

)
dϕ×

×
[
B(N ; 2N,ϕ)

ϕ
+ B(N ; 2N, 1− ϕ)

1− ϕ

]
. (114)

As in the case of periodic boundary conditions, the pre-
vious distribution does not depend on i. We obtain, for
N > −p, the average optimal cost straightforwardly as

ε
(p)
N = N

(
2N
N

)
β1/2 (N + p,N)

= 1
2p

[
1− p√

πN
+ p(p− 1)

4N + o

(
1
N

)]
, (115)

where we have introduced the incomplete Beta function

βs(a, b) :=
s∫

0

ta−1(1− t)b−1 d t. (116)

In Fig. 3d we show that the results of our numerical sim-
ulations are in agreement with Eq. (115).

IV. CONCLUSIONS

In the present paper we discussed the Euclidean match-
ing problem and the Euclidean assignment problem on a

set of 2N points both on the line and on the circumfer-
ence.
We first stated some fundamental properties of the Eu-

clidean assignment problem on the line for a large class
of cost functions c(z), which we called C-functions, and
for strictly increasing cost functions. We proved that,
for these classes of cost functions, the optimal matching
xi → yπ(i) between the set of points 0 ≤ x1 < x2 < · · · <
xN ≤ 1 and the set of points 0 ≤ y1 < y2 < · · · < yN ≤ 1
can be expressed as a permutation in the form π(i) = i+k
(mod N) for some k, in the case of strictly increasing
cost functions the optimal permutation being the iden-
tical permutation, π(i) = i. We considered then the as-
signment problem both on the line and on the circum-
ference in presence of disorder, assuming the points to
be uniformly and randomly generated on the considered
domain. We chose the cost function c(z) = zp with
p ∈ R \ [0, 1], which is a C-function for p < 0 and a
strictly increasing function for p > 1. The analytical in-
vestigation allowed us to relate the optimal solution, in all
the considered cases, to a well-known Gaussian stochas-
tic process, namely the Brownian bridge process, in the
N → +∞ limit. Then, we analytically derived the ex-
pression for the average optimal cost and its finite-size
corrections for the considered range of values of p, and
we gave an explicit expression of the correlation functions
for the optimal solutions. In particular, we computed

ε
(p)
N =


Γ(1+p/2)
p+1

[
1− 1

N
p(p+2)

8 +o
( 1
N

)] 1
Np/2 for p > 1,

1
2p

[
1 + 1

N
p(p−2)(p−4)

3(p−3) + o
( 1
N

)]
for p < 0,

(117)
and the equivalent results on the unit circumference,

ε
(p)
N =


[
Cp + Dp

N + o
( 1
N

)] 1
Np/2 for p > 1,

1
2p

[
1− 2pλ1√

N
+ 2p(p−1)λ2

N + o
( 1
N

)]
for p < 0,

(118)
where the constants λ1 and λ2 were defined in Eq. (85b)
and Eq. (85c), respectively. Unfortunately, in the p > 1
case, only C2 is known analytically.
We analyzed in a similar way the Euclidean match-

ing problem. In particular, for the average cost on the
unit interval we computed the constants appearing in the
expansions

ε
(p)
N =


Γ(p+1)

2p

[
1− p(p+1)

4N + o
( 1
N2

)] 1
Np for p > 1,

1
2p

[
1 + p(p−3)

4N + o
( 1
N2

)]
for p < 0,

(119)
and those for the problem on the unit circumference,
where

ε
(p)
N =



Γ(p+1)
2p

[
1 +

√(
Γ(2p+1)
Γ2(p+1) − 1

)
1
πN + o

(
1√
N

)]
1
Np

for p > 1,
1
2p

[
1− p√

πN
+ p(p−1)

2p+2N + o
( 1
N

)]
for p < 0.

(120)
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The first remark is the different leading power of N ap-
pearing here, that is N−p, at variance with the assign-
ment case where it was N−p/2. Second, we observe that,
both in the case of the assignment problem with p < 0
and in the case of the matching problem, the finite-size
corrections to the average optimal cost change their scal-
ing properties when open boundary conditions are re-
placed by periodic boundary conditions, i.e., when we
consider the problem on the circumference instead of
the interval. In particular, in the case of open bound-
ary conditions the finite-size corrections scale as O (1/N),
whereas in the case of periodic boundary conditions, they
scale as O (1/

√
N). This fact can be observed both in

Fig. 2 and in Fig. 3.
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Appendix A: On the convexity property of
C-functions

In this appendix, we show that Eq. (18a) is equivalent
to convexity if the function f is continuous on the interval
(0, 1). Introducing

R(z1, z2) := f(z1)− f(z2)
z1 − z2

, (A1)

Eq. (18a) can be written as

R(z1, z2) ≤ R(z1 + η, z2 + η). (A2)

Observe that R(z1, z2) is a symmetric function of its ar-
guments, and, moreover, for n ∈ N, we can write

R(z1, z2) =

= 1
n

n−1∑
k=0

R

(
z1 + k

z2 − z1

n
, z2 + (k + 1)z2 − z1

n

)
≤ R

(
z1, z2 + z2 − z1

n

)
, (A3a)

and

R (z1, z2 + n(z2 − z1)) =

= 1
n

n−1∑
k=0

R (z1 + k(z2 − z1), z2 + (k + 1)(z2 − z1))

≥ R (z1, z2) . (A3b)

Eqs. (A3) are equivalent to say that the functionR(z1, z2)
is monotonically non decreasing respect to each one of
its arguments taking the other one fixed, provided that
the ratio of the considered intervals is rational. If the
function is continuous, we can extend this property to an

arbitrary couple of intervals, and therefore, for η > 0, we
can simply state the stronger chain of inequalities

R(z1, z2) ≤ R(z1, z2 + η) ≤ R(z1 + η, z2 + η), (A4)

that is R is monotonically non decreasing respect to each
of its arguments taking the other one fixed. This property
is equivalent to convexity. Indeed, if we consider ξ =
tx1 + (1− t)x2 with t ∈ [0, 1] and x1 < x2,

R(ξ, x1) ≤ R(ξ, x2), (A5a)
f(ξ)− f(x1)

(1− t)(x2 − x1) ≤
f(x2)− f(ξ)
t(x2 − x1) , (A5b)

f(ξ) ≤ tf(x1) + (1− t)f(x2). (A5c)

Appendix B: Derivation of Eq. (55)

In this appendix we will sketch the derivation of
Eq. (55). We have to evaluate

Pr[ϕk ∈ dϕ] = dϕ
(
N

k

)2
k2

1∫∫
0

δ (ϕ− y + x)×

(xy)k−1[(1− x)(1− y)]N−k dxd y (B1)

for N � 1. Let us write now, for N � 1,

k = Ns+ 1
2 , s ∈ (0, 1). (B2)

The integral above can be written as

Γ2(N + 1)
Γ2(Ns+1/2)Γ2(N+1/2−Ns)

1∫∫
0

δ (ϕ−y+x)√
xy(1− x)(1− y)

× eNs ln(xy)+N(1−s) ln[(1−x)(1−y)] dx d y. (B3)

We will evaluate the integral above using the saddle point
method. In particular, the saddle point (xsp, ysp) is ob-
tained for

xsp = ysp = s. (B4)

Observe now that, at fixed s, for N � 1,

Γ(N + 1)
Γ(Ns+1/2)Γ(N+1/2−Ns) =

=
√
N

e−N [s ln s+(1−s) ln(1−s)]
√

2π

×
[
1+ 1 + 2s(1− s)

24Ns(1− s) +o
(

1
N

)]
, (B5)

where we have used the Stirling expansion for N � 1

N ! =
√

2πN
(
N

e

)N [
1 + 1

12N + o

(
1
N

)]
. (B6)

We have, therefore,



19

Γ2(N + 1)
Γ2(Ns+1/2)Γ2(N+1/2−Ns)

1∫∫
0

δ (ϕ− y + x)√
xy(1− x)(1− y)

eNs ln(xy)+N(1−s) ln[(1−x)(1−y)] dxd y

= N

2π

[
1 + 1 + 2s(1− s)

24Ns(1− s) +o
(

1
N

)]2 1∫∫
0

δ (ϕ− y + x)√
xy(1− x)(1− y)

exp
[
−N (x−s)2+(y−s)2

2s(1− s) +N(1− 2s) (x−s)3+(y−s)3

3s2(1− s)2 −N (1− 3s(1− s)) (x−s)4+(y−s)4

4s3(1− s)3 + . . .

]
dx d y. (B7)

The previous expression suggests the introduction of the set of variables

ξ :=
√
N(x− s), (B8a)

η :=
√
N(y − s), (B8b)

in such a way that the integral becomes

Γ2(N + 1)
Γ2(Ns+1/2)Γ2(N+1/2−Ns)

1∫∫
0

δ (ϕ− y + x)√
xy(1− x)(1− y)

eNs ln(xy)+N(1−s) ln[(1−x)(1−y)] dxd y

= 1
2πs(1− s)

[
1 + 1 + 2s(1− s)

24Ns(1− s) +o
(

1
N

)]2+∞∫∫
−∞

δ
(
ϕ− η√

N
+ ξ√

N

)
√(

1− ξ

(1−s)
√
N

)(
1− η

(1−s)
√
N

)(
1 + ξ

s
√
N

)(
1 + η

s
√
N

)
× exp

[
− ξ2 + η2

2s(1− s) + 1− 2s
3s2(1− s)2

ξ3 + η3
√
N
− 1− 3s(1− s)

4(1− s)3s3
ξ4 + η4

N
+ o

(
1
N

)]
d ξ d η. (B9)

Introducing φ =
√
Nϕ, the distribution in Eq. (55) is

obtained through a series expansion for N � 1 and per-
forming the Gaussian integrals.

Appendix C: On the minimum of asymptotically
uncorrelated exchangeable variables

Let us consider a vector Φ of 2N continuous variables,
Φ = (Φ1, . . . ,Φ2N ), and let us assume that their joint
probability distribution density is given by p(Φ). We
assume that the 2N random variables are exchangeable,
i.e., such that p(Φ1, . . . ,Φ2N ) = p(Φπ(1), . . . ,Φπ(2N)) for
any permutation π ∈ S2N [37]. In the following, we will
denote the expectation respect to the probability density
p(Φ) by E(•). Exchangeability implies

µ := E (Φi) , (C1a)

σ2 := E
[
(Φi − µ)2

]
, (C1b)

which we suppose to remain finite for N → +∞. We
also make the assumption that the 2N components of
the vector Φ are weakly correlated, i.e., the covariance is

given by

ρ

N
:= E [(Φi − µ) (Φj − µ)] , (C1c)

in such a way that it vanishes as O(1/N) when N → +∞,
asymptotically recovering independence. Given a subset
{Φl(i)}i=1,...,K of 1 ≤ K ≤ 2N different components of
Φ, it is easily seen that

0 ≤ E

( K∑
i=1

Φl(i) −Kµ
)2 = Kσ2 +K

K − 1
N

ρ. (C2)

For K = 2N , the relation above implies, for N → +∞,
σ2 + 2ρ ≥ 0, whereas from K = N we obtain σ2 + ρ > 0
in the same limit. Let us now partition the 2N com-
ponents of Φ in two subsets with the same cardinality,
for example, the entries with even and odd labels, and
consider

εo := 1
N

N∑
i=1

Φ2i−1, εe := 1
N

N∑
i=1

Φ2i. (C3)

We want to evaluate the mean value of ε := min{εo, εe}
for N � 1. The joint distribution of εo and εe is
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P (εo, εe) = E

[
δ

(
εo −

1
N

N∑
i=1

Φ2i−1

)
δ

(
εe −

1
N

N∑
i=1

Φ2i

)]

=
+∞∫∫
−∞

dλe dλo

4π2 E

{
exp

[
−iλe

(
εe −

1
N

N∑
k=1

Φ2k

)
− iλo

(
εo −

1
N

N∑
k=1

Φ2k−1

)]}

=
+∞∫∫
−∞

dλe dλo
exp

[
−iλe(εe − µ)− iλo(εo − µ)− λ2

e+λ2
o

2N σ2 − (λe+λo)2

2N ρ
]

4π2

[
1 + o

(
1
N

)]
.

= N

2πσ
√
σ2 + 2ρ

exp
[
− N

2σ2 (σ2 + 2ρ)
(
εe − µ εo − µ

)(σ2 + ρ −ρ
−ρ σ2 + ρ

)(
εe − µ
εo − µ

)][
1 + o

(
1
N

)]
, (C4)

which is a bivariate Gaussian distribution function. The
distribution P (ε) of the minimum ε := min{εe, εo} is
therefore given by

P (ε) = − ∂

∂ε

+∞∫∫
−∞

θ(εe − ε)θ(εo − ε)P (εe, εo) d εe d εo

= 2
∞∫
ε

P (ε̂, ε) d ε̂,

(C5)

which gives, in the limits of our approximations,

P (ε) =
√
N

2π
e−

N
2

(ε−µ)2

σ2+ρ√
σ2 + ρ

×

[
1− erf

(√
N

2
(ε− µ)σ√

(σ2 + 2ρ)(σ2 + ρ)

)]
, (C6)

with erf(x) := 2/
√
π
∫ x

0 exp(−z2) d z. In this form we see
that the function P (ε) depends on x =

√
N(ε − µ) and

the distribution is a product of an even function and an
odd function of x. In the spirit of the approximation, the
domain D of x is substituted, for N � 1, with the en-
tire real line, up to exponentially small corrections, being
the probability distribution concentrated around µ. We
immediately obtain∫

D

P (ε) d ε '
∞∫
−∞

e−
1
2

x2
σ2+ρ√

σ2 + ρ

dx√
2π

= 1. (C7a)

N

∫
D

(ε− µ)2P (ε) d ε '
∞∫
−∞

e−
1
2

x2
σ2+ρ√

σ2 + ρ

dx√
2π

= σ2 + ρ.

(C7b)

More interestingly,
√
N

∫
D

(ε− µ)P (ε) d ε '

' −
∞∫
−∞

x
e−

1
2

x2
σ2+ρ√

σ2 + ρ
erf
(√

1
2

xσ√
(σ2 + 2ρ)(σ2 + ρ)

)
dx√
2π

= − σ√
π
, (C7c)

a result showing that, up to higher order terms, there is
no influence of the weak correlation ρ on the expectation
value of ε. This can be seen in a different way introducing
the variables

X− :=
√
N
εo − εe√

2
, X+ :=

√
N
εo + εe − 2µ√

2
(C8)

in the distribution P (εe, εo), which gives the new distri-
bution

PX(X−, X+) =
exp

[
− 1

2(σ2+2ρ)X
2
+ − 1

2σ2X
2
−

]
2π
√
σ2(σ2 + 2ρ)

. (C9)

Using the fact that, due to exchangeability, P (εo, εe) =
P (εe, εo), we can replace

2(εe−µ)θ(εo−εe)→ (εe−µ)θ(εo−εe)+(εo−µ)θ(εe−εo)
= εo − µ− (εo − εe) θ (εo − εe)

→
√

2X+ −X−θ(X−)√
N

. (C10)

and therefore

√
N

+∞∫
−∞

(ε− µ)P (ε) d ε =

= 2
√
N

+∞∫∫
−∞

(εe − µ) θ(εo − εe)P (εe, εo) d εe d εo

=
√

2
+∞∫∫
−∞

[X+ −X−θ(X−)]PX(X−, X+) dX+ dX−

= − 1√
πσ

+∞∫
0

X− exp
[
− 1

2σ2X
2
−

]
dX− = − σ√

π
. (C11)
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