EXERCISE SESSION 3^{*}

for the lecture "Adding Geometry: Euclidean Random Assignment Problems (ERAPs) and extensions,

featuring a crash course on point processes"

Nesin Mathematics Village, Turkey, 29/07/2024–4/08/2024

Matteo D^{\prime} ACHILLE[†]

Exercise 1 (**) (HOLE PROBABILITY) Consider a Poisson Point Process (PPP) $X = (X_i; i \ge 1)$ of points in the plane with intensity measure Leb_{R2}. Let D_1 be the unit disk, C_1 the unit circle, and P_n a regular *n*-gon inscribed in C_1 C_1 for $n \geq 3$. Let $\mathcal{R}_n = D_1 \setminus P_n$ (see Fig. 1 for $n = 5$).

Fig. 1: The region \mathcal{R}_5 is shaded in blue.

 $\&$ What is the smallest n s.t. the probability that no point of **X** falls into \mathcal{R}_n is greater than $\frac{1}{2}$?

Exercise 2 (******) (QUADRATIC ERAP ON THE UNIT INTERVAL) Consider the ERAP with uniform disorder over the unit interval [0, 1] with $p = 2$.

✎ Taking inspiration from Exercise 1 of Session 2, prove that

$$
\mathbb{E}[\mathcal{H}_{\text{opt}}] = \frac{1}{3} \frac{n}{n+1} . \tag{1}
$$

[∗]Latest version (August 3, 2024) available electronically at: <https://matteodachille.github.io/teaching> † matteo.dachille@universite-paris-saclay.fr, solutions welcome!

Exercise 3 (******) (QUARTIC ERAP ON THE UNIT INTERVAL) Consider the ERAP with uniform disorder over the unit interval [0, 1] with $p = 4$.

✎ Taking inspiration from Exercise 2 above, prove that

$$
\mathbb{E}[\mathcal{H}_{\text{opt}}] = \frac{2}{5} \frac{n}{(n+1)(n+2)}.
$$

Exercise 4 (*********) (NICE FORMULAS) Consider $(E, \mathcal{D}) = ([0, 1], |\cdot|)$, with disorder $\nu = \text{Unif}_{[0,1]}$. Caracciolo *et al.* [\[1\]](#page-1-0) proved that, calling $B_{(k)}$ the k-th order statistics of β (and analogously for \mathcal{R}), for all integer $\ell \geq 1$ and $n \in \mathbb{N}$,

$$
\mathbb{E}[|B_{(k)} - R_{(k)}|^\ell] = \frac{\Gamma^2(n+1)\Gamma(k+\frac{\ell}{2})\Gamma(n-k+1+\frac{\ell}{2})\Gamma(1+\ell)}{\Gamma(k)\Gamma(n-k+1)\Gamma(n+1+\frac{\ell}{2})\Gamma(n+1+\ell)\Gamma(1+\frac{\ell}{2})}, \ k = 1, \dots, n. \tag{3}
$$

For the choice of cost function $f = \mathcal{D}^p$, with $p > 1$, Equation [\(3\)](#page-1-1) provides directly a closed formula for $\mathbb{E}[\mathcal{H}_{opt}]$, valid $\forall n \in \mathbb{N}$ and $\forall p > 1$, namely

$$
\mathbb{E}[\mathcal{H}_{\text{opt}}] = \frac{\Gamma(1+p/2)}{p+1} \frac{\Gamma(n+1)}{\Gamma(n+1+p/2)} n \tag{4}
$$

(remark that Equation [\(4\)](#page-1-2) reduces to Equation [\(1\)](#page-0-1) if $p = 2$ and to Equation [\(2\)](#page-1-3) if $p = 4$).

 \mathscr Are there other choices of $f = f(\mathcal{D})$ for which Eq. [\(3\)](#page-1-1) provides a nice formula for $\mathbb{E}[\mathcal{H}_{opt}]$?

References

[1] Caracciolo, S., Di Gioacchino, A., Malatesta, E. M., and Molinari, L. G. Selberg integrals in 1D random Euclidean optimization problems. Journal of Statistical Mechanics: Theory and Experiment 2019, 6 (jun 2019), 063401.