EXERCISE SESSION 4^*

for the lecture "The phase diagram of ERAPs in d = 1"

Nesin Mathematics Village, Turkey, 28/07/2024-4/08/2024

Matteo D'Achille[†]

Exercise 1 (*) (BASIC PROPERTIES OF THE STANDARD BROWNIAN BRIDGE) Recall the definition of the standard brownian Bridge B_{τ} by the following equality in law

$$B_{\tau} = W_{\tau} - \tau W_1, \quad \tau \in [0, 1].$$

where W_{τ} denotes one dimensional Wiener process.

- \mathbb{S} Show the following:
- a) Prove the following equality in law

$$\sum_{k=1}^{n} B_{\tau}^{(k)} \stackrel{\text{law}}{=} \sqrt{n} B_{\tau}$$

where $(B_{\tau}^{(k)})_{k=1}^{n}$ are *n* independent standard Brownian bridges.

b) Given two times $t_1, t_2 \in [0, 1]$, $t_2 > t_1$, and two positions $x_1, x_2 \in \mathbb{R}$, provide an expression for the conditional probability density of $B_{t_2} = x_2$ given $B_{t_1} = x_1$.

Exercise 2 (**)** (ERAP AND A FUNCTIONAL OF THE BROWNIAN BRIDGE) Consider the standard Brownian Bridge B_{τ} on [0, 1] defined in Exercise 1. Define the following functional

$$\Phi(B_{\tau};\Lambda_p) \stackrel{\text{def}}{=} \int_0^1 |B_{\tau} - \Lambda_p|^p d\tau , \qquad (1)$$

where Λ_p is a real-valued random shift independent on τ . The goal of the exercise is to study the functional 1 via a variational principle.

- Address the following three points:
- a) Discuss \exists and ! of extremizers Λ_p^* depending on p.
- b) Prove that $\forall p \geq 1$, any minimizer Λ_p^* is centered. Provide a geometrical interpretation of Λ_p^* . What does Λ_2^* represent? Relate it to the solution of Exercise 2, Session 3. Same for Λ_1^* .
- c) Prove that $\frac{d}{dp}\mathbb{E}\left[(\Lambda_p^*)^2\right] > 0 \text{ for } p \in [1,\infty).$

^{*}Latest version (August 3, 2024) available electronically at: https://matteodachille.github.io/teaching [†]matteo.dachille@universite-paris-saclay.fr, solutions welcome!