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Abstract

We consider models of assignment for random N blue points and N red
points on an interval of length 2N , in which the cost for connecting a
blue point in x to a red point in y is the concave function |x − y|p, for
0 < p < 1. Contrarily to the convex case p > 1, where the optimal
matching is trivially determined, here the optimization is non-trivial.

The purpose of this paper is to introduce a special configuration, that
we call the Dyck matching, and to study its statistical properties. We
compute exactly the average cost, in the asymptotic limit of large N ,
together with the first subleading correction. The scaling is remarkable:

it is of order N for p < 1
2
, order N lnN for p = 1

2
, and N

1
2
+p for p > 1

2
,

and it is universal for a wide class of models. We conjecture that the
average cost of the Dyck matching has the same scaling in N as the cost
of the optimal matching, and we produce numerical data in support of
this conjecture. We hope to produce a proof of this claim in future work.
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1 The problem

1.1 Models of Random Assignment

In this paper we study the statistical properties of the Euclidean random assign-
ment problem, in the case in which the points are confined to a one-dimensional
interval, and the cost is a concave increasing function of their distance.

The assignment problem is a combinatorial optimization problem, a special
case of the matching problem when the underlying graph is bipartite. As for any
combinatorial optimization problem, each realisation of the problem is described
by an instance J , and the goal is to find, within some space of configurations,
the particular one that minimises the given cost function. In the assignment
problem, the instance J is a real-positive N ×N matrix, encoding the costs of
each possible pairing among N blue and N red points (Jij is the cost of pairing
the i-th blue point with the j-th red point), the space of configurations is the
set of permutations of N objects, π ∈ SN (describing a complete assignment of

blue and red points), and the cost function is HJ(π) =
∑N
i=1 Jiπ(i).

A random assignment problem is the datum of a probability measure µN (J)
on the possible instances of the problem. The interest is in the determination of
the statistical properties of this problem w.r.t. the measure under analysis, and
in particular the statistical properties of the optimal configuration. The problem
can be formulated as the zero-temperature limit of the statistical mechanics
properties of a disordered system, where the disorder is the instance J , the
dynamical variables are encoded by π, and the Hamiltonian is the cost function
HJ(π).

The case of random assignment problem in which the entries Jij are random
i.i.d. variables, presented already in [1], has been solved at first, in a seminal
paper by Parisi and Mézard [2], through the replica trick and afterwards by
the Cavity Equations [3] (see also [4] for a recent generalization of those results
also at finite system size). The Parisi-Mézard solution also leads to the striking
prediction that, calling πopt(J) the optimal matching for the instance J and
Hopt(J) = HJ(πopt(J)) its optimal cost, the average over all instances of Hopt,

for N large, tends to π2

6 .
This problem is simpler than a spin glass, as the determination of the optimal

configuration is feasible in polynomial time (for example, through the celebrated
Hungarian Algorithm [5]), however it remains non-trivial, and the thermody-
namics is replica-symmetric, although the stability of the RS phase becomes
marginal in the zero-temperature limit (as evinced, again, via the analysis of
the cavity equations). A number of distinct other approaches to the model, and
the solution of the Parisi conjecture [6] for the behaviour at finite size in the
case of an exponential distribution of the random costs, which is the simplest
case of a more general conjecture by Coppersmith and Sorkin [7], have appeared
later on [8–10], and it is fair to say that, up to date, this model is one of the
best-understood and instructive glassy system.

In analogy with the challenge of understanding spin glasses in finite dimen-
sion, there is an interest towards the study of measures µN (J) which are induced
by some random process in a d-dimensional domain. For example, the blue and
red points could be drawn randomly in some compact domain Ω ⊂ Rd (e.g.,
uniformly and independently), with the entry Jij given by some cost function
c(xi, yj) where xi and yj are the coordinates in Ω of the i-th blue point, and
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the j-th red point, respectively. In the simplest versions of the model, the cost
will be invariant by translations and rotations, so it will just be a function of
the Euclidean distance between the two points [11], c(x, y) = c(|x− y|). Scaling
and universality arguments suggest to consider cost functions with a power-law
behaviour, that is, for some parameter p, we shall consider the cost function

c(xi, yj) = ±|xi − yj |p . (1)

Moreover, the properties of the solution of the assignment problem depend
strongly on the monotonicity and concavity of the cost function, and power-law
costs span a variety of combinations of such behaviours as p varies in R (and
the sign is considered). This observation suggests that models with different
values of p, and different signs of the cost function, are potentially in different
universality classes, so that it is desirable to perform a study of the model both
at arbitrary d and at arbitrary p (and sign).

For a cost function c(x, y) = s |x−y|p, with s = ±1, we say that we are in the
attractive case if sp > 0 (that is, the cost increases as the distance increases),
and in the repulsive case if sp < 0 (that is, the cost decreases as the distance
increases). The limit p → 0 also makes sense, as the cost reads (with s = ±1)
c(x) = s|x|p = s(1+p ln |x|+O(p2)), but, as πopt({Jij}) = πopt({κJij+λi+µj}),
at zero temperature this is equivalent to the cost c(x) = s′ ln |x|+O(p), where
s′ = s for the limit p↘ 0 and s′ = −s for the limit p↗ 0.

For the p > 1 attractive case (i.e. monotone increasing and convex cost
function), if the subset Ω ⊂ Rd is compact, it is known [12] that the average
total cost EN (Hopt) of the optimal assignment scales with the number of points
N according to

EN (Hopt) '


N1− p

2 for d = 1

N1− p
2 (logN)

p
2 for d = 2

N1− p
d for d > 2

(2)

where a(N) ' b(N) if a(N)
b(N) tends to a non-zero finite constant for N → ∞. In

this case a relation with the classical optimal transport problem in the continuum
has been exploited [13], in particular for the case p = 2 where very detailed
results have been obtained [14–16].

If, at size N , the points are sampled uniformly in the domain ΩN := N
1
d Ω

(as to keep the average density of order 1), we just have to scale the result above
by the factor N

p
d .

Recently also the case in which Ω is not compact, and the points are not
sampled uniformly, has been considered [17–19].

In the repulsive case p < 0 the cost function c is still convex. As far as we
know, for this version of the problem only the case d = 1 has been studied in
detail. In this case [20,21]:

EN (Hopt) ' N . (3)

More precisely, in d = 1 corrections to the leading order in the large-N expansion
were studied. Among the results, we could derive the first finite-size corrections
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for p < 0, and an explicit expression in N and p for p > 1 [22]:

EN (Hopt) =


N

Γ
(
1 + p

2

)
p+ 1

Γ (N + 1)

Γ
(
N + 1 + p

2

) ' Γ
(
1 + p

2

)
p+ 1

N1− p
2 for p > 1

N
1

2p

[
1 +

1

3N

p(p− 2)(p− 4)

p− 3
+ o

(
1

N

)]
for p < 0 .

(4)
The attractive case p < 0 has not been studied so far, but is possibly of interest.
However, it is easily seen that in this case the quantity EN (Hopt) makes sense
only when |p| < d, otherwise one just gets EN (Hopt) = −∞ already from the
singular portion of the measure associated to the rare instances in which a red
and a blue point almost coincide.

When 0 < p < 1, in the attractive case, the cost function c is instead concave.
Also in this case only the case d = 1 has been considered, where it has been
shown that the optimal solution is always non-crossing [23, 24]. A matching is
non-crossing if each pair of matched points defines an interval on the line which
is either nested to or disjoint from all the others.

Contrary to the case p > 1, where in d = 1 the optimal matching is com-
pletely determined, and to the case p < 0, where in d = 1 it is known that the
optimal matching has certain cyclic properties, the non-crossing property is not
sufficient to fully characterize the optimal assignment; the regime 0 < p < 1 is
thus much more challenging to study.

The relevance of non-crossing matching configurations among elementary
units aligned on a line has emerged both in physics and in biology. In the
latter case, this is due to the fact that they appear in the study of the sec-
ondary structure of single stranded DNA and RNA chains in solution [25].
These chains tend to fold in a planar configuration, in which complementary
nucleotides are matched, and planar configurations are exactly described by
non-crossing matchings between nucleotides. The secondary structure of a RNA
strand is therefore a problem of optimal matching on the line, with the restric-
tion on the optimal configuration to be planar [26–28]. The statistical physics
of the folding process is highly non-trivial and it has been investigated by many
different techniques [29,30], also in presence of disorder and in search for glassy
phases [28, 29, 31–33]. So, as a further motivation for the present work, under-
standing the statistical properties of the solution to random Euclidean matching
problems with a concave cost function could yeld results and techniques to bet-
ter understand these models of RNA secondary structure.

A summary of the scaling behaviours for the different declinations of the
models is provided in the Conclusion section.

1.2 Random Assignment Problems studied in this paper

In this paragraph we describe the problem of 0 < p < 1 random assignment in
detail, and fix our notations.

First, we fix Ω to be a segment (an alternate possible choice, 1-dimensional in
spirit, which is not considered here but is considered, for example, in [15,20,24],
is to take Ω as a circle, or more generally, in dimension d, to take Ω as a
d-dimensional torus [13]).

Notice that in the literature Ω is typically taken to be deterministically the
unit segment [0, 1], while in our paper we will find easier to work with a segment
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x1 y1 x2 x3 y2 · · ·

s0 s1 s2 s3 s4 · · ·

0 L

Figure 1: Example of instance J = (~x, ~y) = [~s, σ], in the PPP model. Bottom:
the configuration of points. Top: the Dyck bridge associated to σ. Here N = 8,
and σ = {+,−,+,+,−,+,−,−,−,−,+,+,−,+,+,−}.

[0, L], where L may be a stochastic variable, whose distribution depends on N .
We will work in the framework of constant density, that is E(L) ∼ N , so that,
for comparison with the existing literature, our results should be corrected by
multiplying by a factor of the order N−p.

In dimension 1 there is a natural ordering of the points, so that we can encode
an instance J = (~x, ~y) by the ordered lists ~x = (x1, x2, . . . , xN ), xi ≤ xi+1, and
~y = (y1, y2, . . . , yN ), yi ≤ yi+1. A useful alternate encoding of the instance is
J = [~s, σ], where s = (s0, s1, . . . , s2N ), si ∈ R+, encodes the distances between
consecutive points (and between the first/last point with the respective endpoint
of the segment Ω) and the vector σ = (σ1, σ2, . . . , σ2N ) ∈ {−1,+1}2N , with∑
i σi = 0, encodes the sequence of colours of the points (see Figure 1, where

the identification blue = +1 and red = −1 is adopted). In other words, the
partial sums of ~s, i.e. (s0, s0 + s1, s0 + s1 + s2, . . . , s0 + · · ·+ s2N−1), constitute
the ordered list of ~x ∪ ~y, and σ describes how the elements of ~x and ~y do
interlace. In this notation, the domain of the instance Ω = [0, L] is determined

by L =
∑2N
i=0 si. Remark that the cardinality of the space of possible vectors σ

is just the central binomial,

BN :=

(
2N

N

)
. (5)

For simplicity, in this paper we consider only the non-degenerate case, in which
almost surely all the si’s are strictly positive, that is, the values in ~x∪ ~y are all
distinct.

In this paper, and more crucially in subsequent work, we shall consider two
families of measures. In all these measures, we have a factorisation µ([~s, σ]) =
µ1(~s)µ2(σ), and the measure on σ is just the uniform measure.

Independent spacing models (ISM). The measure µ(~s) is factorised, and
the si’s are i.i.d. with some distribution f(s) with support on R+ (and,
for simplicity, say with all moments finite,

∫
ds skf(s) < ∞ for all k).

Without loss of generality, we will assume that the average of f(s) is 1,
i.e. the average of L is 2N + 1. In particular, we will consider:

Uniform spacings (US): the si’s are deterministic, identically equal
to 1, and thus L = 2N + 1 for all instances;
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Exponential spacings (ES): the si’s are i.i.d. with an exponential dis-
tribution f(s) = g1(s) = exp(−s), and thus L concentrates on 2N+1,
but has a variance of order N .

Exchangeable process model (EPM). This is a generalisation of the ISM
above, but now the si’s are not necessarily i.i.d., they are instead ex-
changeable variables, that is, for all 0 ≤ i < 2N ,

µ(s0, . . . , si, si+1, . . . , s2N ) = µ(s0, . . . , si+1, si, . . . , s2N ) . (6)

In particular, within this class of models we could have that µ is supported
on the hyper-tetrahedron T2N described by si ≥ 0, and L =

∑
i si =

2N + 1. In this paper, we will consider:

Poisson Point Process (PPP): the si’s are the spacings among the
sorted list of 0, 2N+1, and 2N uniform random points in the interval
[0, 2N + 1].

Each of these three models has its own motivations. The PPP case is, in a
sense, the most natural one for what concerns applications and the comparison
with the models in arbitrary dimension d. Implicitly, it is the one described
in the introduction. The ES case is useful due to a strong relation with the
PPP case (see Remark 1 and Lemma 4 later on in Section 2.2). In a sense, it
is the “Poissonisation” of the PPP case (where in this case it is the quantity L
that has been “Poissonised”, that is, it is taken stochastic with its most natural
underlying measure, instead of deterministic). The US case will prove out, in
future work, to be the most tractable case for what concerns lower bounds to
the optimal cost.

As all of the measures above are factorized in σ and ~s, and the measure over
σ is uniform, it is useful to define two shortcuts for two recurrent notions of
average.

Definition 1 For any quantity A(J) = A(σ,~s), we denote by A the average of
A over σ

A := Eσ(A) =
1

BN

∑
σ

A(σ,~s) ; (7)

This average is independent from the choice of model among the classes above.
We denote by

〈A〉 := Eµ(~s)(A) (8)

the average of A over ~s, with its appropriate measure dependence on the choice
of model. Finally, we denote by EN (A) the result of both averages, in which we
stress the dependence from the size parameter N in the measure, that is

EN (A) := Eσ,µ(~s)(A) = 〈A〉 = 〈A〉 . (9)

For a given instance, parametrised as J = (~x, ~y), or as J = [~s, σ], (and in which
the cost function also has an implicit dependence from the exponent p), call
πopt one optimal configuration, and Hopt(J) = HJ(πopt).

In this paper, we will introduce the notion of Dyck matching πDyck of an
instance J and we will compute its average cost HDyck := EN (HJ(πDyck)) for
the measures ES and PPP (with a brief discussion on the US case).

In particular we prove the following theorem:
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Theorem 1 For the three measures ES, US and PPP, let EN (HDyck) denote
the average cost of the Dyck matchings. Then

EN (HDyck) '


N 0 ≤ p < 1

2
N lnN p = 1

2

N
1
2 +p 1

2 < p ≤ 1

(10)

where a(N) ' b(N) if a(N)
b(N) tends to a finite, non-zero constant when N →∞.

This theorem follows directly from the combination of suitable lemmas, namely
Proposition 1, Proposition 2 and Corollary 1 appearing later on. In fact, our
results are more precise than what is stated in the theorem above (we describe
the first two orders in a series expansion for large N , including formulas for
the associated multiplicative constants), details are given in the forementioned
propositions.

The average cost of Dyck matchings provides an upper bound on the aver-
age cost of the optimal solution; numerical simulations for the PPP measure,
described in Section 4, suggest the following conjecture, that we leave for future
investigations:

Conjecture 1 For the three measures ES, US and PPP, and all 0 < p < 1,

lim
N→∞

EN (Hopt)

EN (HDyck)
= kp , (11)

with 0 < kp < 1.

2 Basic facts

Before starting our main proof, let us introduce some more notations, and state
some basic properties of the optimal solution.

2.1 Basic properties of the optimal matching

A Dyck path of semi-length N is a lattice path from (0, 0) to (2N, 0) consisting of
N ‘up’ steps (i.e. steps of the form (1, 1)) and N ‘down’ steps (i.e., steps (1,−1)),
which never goes below the x-axis. There are CN Dyck path of semi-length N ,
where

CN =

(
2N

N

)
−
(

2N

N + 1

)
=

1

N + 1

(
2N

N

)
(12)

are the Catalan numbers. Therefore the generating function for the Dyck paths
is

C(z) :=
∑
k≥0

Ckz
k =

1−
√

1− 4z

2z
=

2

1 +
√

1− 4z
(13)

The historical name ‘Dyck path’ is somewhat misleading, as it leaves us with no
natural name for the most obvious notion, that is, the walks of length N with
steps in {(1, 1), (1,−1)}. With analogy with the theory of Brownian motion
(which relates to lattice walks via the Donsker’s theorem) [34], we will define
four types of paths, namely walks, meanders, bridges and excursions, according
to the following table:
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y(2N) = 0 y(x) ≥ 0 ∀x
walk no no

meander no yes
bridge yes no

excursion yes yes

(of course, by ‘no’ we mean ‘not necessarily’). Thus, in fact, the ‘paths’ are the
most constrained family of walks, that is the excursions.

In general a Dyck path (i.e., a Dyck excursion) can touch the x-axis several
times. We shall call an irreducible Dyck excursion a Dyck path which touches
the x-axis only at the two endpoints. It is trivially seen that the generating
function for the irreducible Dyck excursions is simply z C(z). As we said above
a Dyck bridge is a walk made with the same kind of steps of Dyck paths, but
without the restriction of remaining in the upper half-plane, and which returns
to the x-axis. The generating function for the Dyck bridges is

B(z) :=
1

1− 2z C(z)
=

1√
1− 4z

=
∑
k≥0

Bkz
k (14)

with Bk the central binomials (5), and k is the semi-length of the bridge (just
like excursions, all Dyck bridges must have even length). The factor 2 in the
functional form of B(z) in terms of C(z) enters because a bridge is a concate-
nation of irreducible excursions, each of which can be in the upper- or the
lower-half-plane.

Now, it is clear that each configuration σ corresponds uniquely to a Dyck
bridge of semi-length N , with σi = +1 or −1 if the i-th step of the walk is an
up or down step, respectively.

In a Dyck walk we shall call (kblue(i), hblue(i)) the two coordinates of the
mid-point of the i-th ascending step of the walk (minus (1

2 ,
1
2 ), in order to have

integer coordinates and enlighten the notation), and call (kred(i), hred(i)) the
coordinates of the mid-point of the i-th descending step (again, minus ( 1

2 ,
1
2 )).

For e = (i, j) an edge of a matching π, call ‖e‖ = kblue(i)−kred(j) the horizontal
distance on the walk, and |e| = |xi − yj | the Euclidean distance on the domain
segment.

For a given Dyck bridge σ, we say that π ∈ SN is non-crossing if, for every
pair of distinct edges e1 = (i1, j1) and e2 = (i2, j2) in π, we do not have the
pattern kblue(i1) < kblue(i2) < kred(j1) < kred(j2), or the analogous patterns
with kblue(i1) ↔ kred(j1), or kblue(i2) ↔ kred(j2), or (·)1 ↔ (·)2. The name
comes from the fact that, if we represent a matching π as a diagram consisting
of the domain segment [0, L], and the set of N semicircles above this segment
connecting the xi’s to the yπ(i)’s (as in the bottom part of Figure 2), then these
semicircles do not intersect if and only if π is non-crossing. Note that, although
these semicircles are drawn on the full [~s, σ] instance, the notion of π being
non-crossing only uses the vector σ.

For a given Dyck bridge σ, we say that π ∈ SN is sliced if, for every edge
e = (i, j) ∈ π, we have hblue(i) = hred(j).

Two easy lemmas have a crucial role in our analysis.

Lemma 1 All the optimal matchings are non-crossing.

Proof. The proof is by absurd. Suppose that π is a crossing optimal matching.
If we have a pattern as kblue(i1) < kred(j2) < kred(j1) < kblue(i2), then the

8



matching π′ with edges e′1 = (i1, j2) and e′2 = (i2, j1) has HJ(π′) < HJ(π),
because |e′1| < |e1| and |e′2| < |e2|.

If we have a pattern as kblue(i1) < kblue(i2) < kred(j1) < kred(j2), then again
the matching π′ with edges e′1 = (i1, j2) and e′2 = (i2, j1) has HJ(π′) < HJ(π),
although this holds for a more subtle reason. Calling a = x2 − x1, b = y1 − x2

and c = y2 − y1, we have |e1| = a+ b, |e2| = b+ c, |e′1| = a+ b+ c and |e′2| = b.
It is the case that, for a, b, c > 0 and 0 < p < 1,

(a+ b)p + (b+ c)p > (a+ b+ c)p + bp . (15)

A proof of this inequality goes as follows. Call F (a, b, c) = (a+ b)p + (b+ c)p −
(a+ b+ c)p − bp. We have F (a, b, 0) = 0, and

1

p

∂

∂c
F (a, b, c) =

1

(b+ c)1−p −
1

(a+ b+ c)1−p > 0 . (16)

All the other possible crossing patterns are in the first or the second of the forms
discussed above, up to trivial symmetries. �

Non-crossing properties for assignment and optimal transport problems with
concave cost functions were studied in the continuum case in [23] and in the
discrete one in [24].

Lemma 2 All the optimal matchings are sliced.

Proof. The proof is by absurd. Suppose that π is a non-sliced optimal matching.
If we have (i, j) ∈ π with hblue(i) 6= hred(j), say hblue(i)− hred(j) = δh 6= 0, we
have that the point xi is matched to yj , and that, between xi and yj , there are
nblue and nred blue and red points, respectively, with nblue−nred = −δh 6= 0. So
there must be at least |δh| points inside the interval (xi, yj) which are matched
to points outside this interval, and thus, together with (i, j), constitute pairs of
crossing edges. So, by Lemma 1, π cannot be optimal. �

The slicing of optimal assignments was studied in [35].

2.2 Reducing the PPP model to the ES model

Theorem 1 (and, hopefully, Conjecture 1), in principle, shall be proven for three
different models, Uniform Spacings (US), Exponential Spacings (ES) and the
Poisson Point Process (PPP). However, as we anticipated, the PPP case is a
minor variant of ES. In this section we give a precise account of this fact.

The starting point is a relation between the two measures:

Remark 1 We can sample a pair [~s ′, σ] with the measure µES
N by sampling a

pair [~s, σ] with the measure µPPP
N , a value L ∈ R+ with the measure g2N+1(L) =

L2N

(2N)! exp(−L) dL, and then defining s′i = si
L

2N+1 .

Indeed, the measure on ~s in the PPP can be seen as the measure over inde-
pendent exponential variables conditioned to the value of the sum; thus, the
procedure leads at sight to a measure over ~s ′ which is unbiased within vectors
~s ′ with the same value of L =

∑
i s
′
i. Then, from the independence of the

spacings in the ES model we easily conclude that the distribution of L must be

exactly g
∗(2N+1)
1 (L), i.e. the convolution of 2N + 1 exponential distributions.
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More precisely, for k an integer, define the Gamma measure

gk(x) :=
xk−1

Γ(k)
e−x = g∗k1 (x) . (17)

We use the same notation for its analytic continuation to k real positive.
We introduce (the analytic continuation of) the rising factorial (following

the notation due to D. Knuth [36]):

np :=
Γ(n+ p)

Γ(n)
=

∫
dx gn(x)xp . (18)

This choice of notation is motivated by the fact that n1 = n1 = n, and that, for
n� p2, np = np(1 +O(p2/n)). More precisely we have:

Lemma 3 For 0 ≤ p ≤ 1 and n > 1

(n+ p− 1)p ≤ np ≤ np . (19)

Proof. It is well known that the Gamma function is logarithmically convex [37].
In particular, for any 0 ≤ p ≤ 1,

ln Γ(n+ p) ≤ (1− p) ln Γ(n) + p ln Γ(n+ 1) = ln Γ(n) + p lnn , (20)

that is
np = exp(ln Γ(n+ p)− ln Γ(n)) ≤ exp(p lnn) = np . (21)

Analogously, we have

ln Γ(n) ≤ (1−p) ln Γ(n+p)+p ln Γ(n+p−1) = ln Γ(n+p)−p ln(n+p−1) , (22)

that is

np = exp(ln Γ(n+ p)− ln Γ(n)) ≥ exp(p ln(n+ p− 1)) = (n+ p− 1)p . (23)

�
Summing up, Remark 1 and Lemma 3 allow to prove that

Lemma 4 The following inequalities hold:(
2N

2N + 1

)p(1−p)
E(HES

opt) ≤ E(HPPP
opt ) ≤ E(HES

opt) . (24)

Also the corresponding inequalities with Hopt replaced by HDyck do hold, as well
as for any other quantity H(π∗(J)), whenever π∗ is some matching determined
by the instance, and invariant under scaling of the instance, that is π∗[~s, σ] =
π∗[λ~s, σ].

Proof. For compactness of notation, we do the proof only for the Hopt case,
but the generalisation is straightforward. Of course, H[λ~s,σ](π) = λpH[~s,σ](π)
for all instances [~s, σ], all configurations π, and all scaling factors λ > 0 (so
as π∗[~s, σ] = π∗[λ~s, σ], it follows that H[λ~s,σ](π

∗[λ~s, σ]) = λpH[~s,σ](π
∗[~s, σ])).

In particular, Hopt([λ~s, σ]) = λpHopt([~s, σ]). In light of Remark 1, we can
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describe the average over µES[~s, σ] in terms of an average over µPPP[~s, σ], and
over g2N+1(L). More precisely

E(HES
opt) =

∫
dµES[~s ′, σ]Hopt([~s

′, σ])

=

∫
dµPPP[~s, σ]

∫
dLg2N+1(L)

(
L

2N + 1

)p
Hopt([~s, σ])

= E(HPPP
opt )

∫
dLg2N+1(L)

(
L

2N + 1

)p
= E(HPPP

opt )
(2N + 1)p

(2N + 1)p
.

(25)

The upper bound follows directly from Lemma 3. The lower bound follows as:

(2N + 1)p

(2N + 1)p
≥
(

1− 1− p
2N + 1

)p
≥
(

1− 1

2N + 1

)p(1−p)
(26)

where first one uses Lemma 3, then the inequality (1 − qε)p ≥ (1 − ε)pq (valid
for ε, p, q ∈ [0, 1]), with ε = 1

2N+1 and q = 1− p. �
In light of this lemma, it is sufficient to consider Theorem 1 (and Conjecture

1) only for the US and ES models.
The precise statement of our conclusions is the following:

Corollary 1

EPPPN (HDyck) = EESN (HDyck)
(
1 +O

(
N−1

))
. (27)

The relevance of this statement lies in the fact that, in the forthcoming equa-
tion (28), we provide an expansion for EESN (HDyck) in which corrections of rel-
ative order 1/N appear as the third term in the expansion (and we provide
explicit results only for the first two terms). As a result, the very same conclu-
sions that we have for the ES model do apply verbatim to the PPP model.

3 The Dyck matching

For every instance [~s, σ], there is a special matching, that we call πDyck, which
is sliced and non-crossing for σ. This is the matching obtained by the canonical
pairing of up- and down-steps within every excursion of the Dyck bridge (see
Figure 2). In analogy with our notation Hopt(J) = HJ(πopt), let us introduce
the shortcut HDyck(J) = HJ(πDyck).

Remark 2 The Dyck matching πDyck is determined by the order of the colours
of the points, σ. In particular it does not depend on the actual spacings between
them, ~s, and it does not depend on the cost exponent p.

Remark 2 is a crucial fact that makes possible the evaluation of the statistical
properties of πDyck, with a moderate effort. In particular, it will lead to the
main result of this paper:

11



Figure 2: The Dyck matching πDyck associated to the Dyck bridge σ in the
example of Figure 1.

Proposition 1 For all independent spacing models

EN (HDyck) ∼


Ap

2 N +
2pΓ(p− 1

2 )

4Γ(p+1) N
1
2 +p +O(1) p < 1

2
1√
2π
N logN +

(
A∗
2 +A′∗

)
N +O(logN) p = 1

2 .
2pΓ(p− 1

2 )

4Γ(p+1) N
1
2 +p +

Ap

2 N +O(N−
1
2 +p) p > 1

2

(28)

where Ap and A∗ are model-dependent quantities, which are not larger than

Amax
p :=

2p+1

(1− 2p)Γ (1− p) , Amax
∗ =

√
2

π
(log 2 + γE) . (29)

and

A′∗ =
γE + 2 log 2− 2√

2π
. (30)

In particular, for the ES model

AES
p =

Γ
(

1
2 − p

)
Γ (p+ 1)

2p−1
√
π Γ (2− p) AES

∗ =

√
2

π
(5 log 2 + γE − 4) . (31)

The remaining of this section is devoted to the proof of this proposition.
First, we factorize the average over the instance J = [~s, σ] in two independent
averages, the average over σ and the one over ~s (see Definition 1):

EN (HDyck) = E

(
N∑
i=1

Ji,πDyck(i)

)
=

N∑
i=1

〈Ji,πDyck(i)〉

= B−1
N

∑
σ

N∑
i=1

〈
|kblue(i)− kred(πσDyck(i))|p

〉
,

(32)

where in the last line we emphasize that πDyck depends only on σ, as stated in

Remark 2, and we adopted again the shortcut BN =
(

2N
N

)
for the total number

of configurations σ.
Due to the fact that the spacings si are independent, the quantity appearing

above, 〈|kblue(i)− kred(πσDyck(i))|p〉, only depends on the length ‖e‖ = 2k+ 1 of

12



the corresponding link e = (i, πDyck(i)), via the formula

S
(p)
k :=

〈
|kblue(i)− kred(πσDyck(i))|p

〉
=

〈( 2k∑
j=0

sj

)p〉
, (33)

where the sj ’s are i.i.d. variables sampled with the distribution f(s) (that is, in
the ES model, i.i.d. exponential random variables).

Then, as a general paradigm for observables of the form
∑
e∈π 〈F (|e|)〉, we

rewrite the sum over all possible σ and over all links e of a given matching
π = πDyck(σ) as a sum over the forementioned parameter k, with a suitable
combinatorial factor vN,k:

∑
e∈π
〈F (|e|)〉 = B−1

N

N−1∑
k=0

vN,k

〈
F

( 2k∑
j=0

sj

)〉
(34)

vN,k =
∑
σ

∑
e∈πDyck(σ)

δ‖e‖,2k+1 . (35)

(Note that
∑
k vN,k = NBN = 2

(
2N−1
N

)
). In particular, in our case,

EN (HDyck) = B−1
N

N−1∑
k=0

vN,k S
(p)
k . (36)

So we face two separate problems: (1) determining the combinatorial coefficients
vN,k, which are ‘universal’ (i.e., the same for all independent-spacing models,
for all cost exponents p and for all observables F as above); (2) determining

the quantities S
(p)
k , that is, the average over the Euclidean length |e| of the link

(which depends from the function f(s) that defines the independent-spacing
model, and from the exponent p).

For what concerns S
(p)
k , this can be computed exactly both in the US and

ES cases: in the US case S
(p)
k = (2k + 1)p, as in fact |e| = 2k + 1 = ‖e‖

deterministically, while in the ES case S
(p)
k = Γ(2k + 1 + p)/Γ(2k + 1). More

generally, for any model with independent spacings we would have that S
(p)
k =∫

dxxpf∗2k+1(x) that is, the sum of 2k+ 1 i.i.d. random variables is distributed
as the (2k + 1)-fold convolution of the single-variable probability distribution.
For the ES case this is exactly the Gamma distribution g2k+1(s). Up to this
point, we could have also evaluated the analogous quantity for the PPP model,
although with a bigger effort (but, from Section 2.2, we know that this is not
necessary).

For what concerns vN,k, in Appendix A we prove that

vN,k = Ck

[
4N−k−1 +

N − k
2

BN−k

]
=: CkVN−k−1 . (37)

In particular, the simple expression for VN−k−1 gives in a straightforward way

V (z) :=

∞∑
j=0

Vjz
j = (1− 4z)−1 + (1− 4z)−

3
2 . (38)

13



We pause to study the distribution of the lengths ‖e‖ of links in πDyck, that is,
the normalised distribution (in k), with parameter N , given by the expression
vN,k/(NBN ). It is known that planar secondary structures have a universal
behaviour for the tail of such a distribution, with exponent − 3

2 . Indeed, by per-
forming a large N expansion at fixed k, and then studying the large k behaviour,
one has

vN,k
NBN

=
Ck
NBN

[
4N−k−1 +

N − k
2

BN−k

]
N→∞≈ 2Ck 4−k

k→∞≈
√

2

π
k−

3
2 ,

(39)

reproducing the known behaviour.
Equation (36), with the help of (37) and (38), can be used to relate the

generating functions

E(z; p) :=

∞∑
N=0

BNEN (HDyck) zN (40)

S(z; p) :=

∞∑
k=0

Ck S
(p)
k zk . (41)

Lemma 5
E(z; p) = z V (z)S(z; p) (42)

Proof.

E(z; p) :=

∞∑
N=0

BNEN (HDyck)zN

=

∞∑
N=0

N−1∑
k=0

CkVN−k−1S
(p)
k zN

=

( ∞∑
k=0

CkS
(p)
k zk

)( ∞∑
N=k+1

VN−k−1z
N−k

)
= z V (z)S(z; p)

(43)

�
The behaviour at large k of S

(p)
k is determined by the theory of large devi-

ations. Said heuristically, the sum of the 2k + 1 i.i.d. variables si concentrates
on 2k+ 1, with tails which are sufficiently tamed that the average of xp is equal

to (2k + 1)p(1 +O(k−1)). That is, S
(p)
k ∼ (2k + 1)p ∼ 2pkp, and we have

CkS
(p)
k ∼ 2p√

π
4kkp−

3
2 . (44)

We recall a fundamental fact in the theory of generating functions: the sin-
gularities of a generating function determine the asymptotic behaviour of its
coefficients. In particular, the modulus of the dominant singularity (that near-
est to the origin) determines the exponential behaviour, and the nature of the
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singularity determines the subexponential behaviour (see [38] for a comprehen-
sive treatment of singularity analysis, and Appendix B for a summary of results).
This tells us that we just need an expression for E(z; p) around its dominant
singularity to extract asymptotic information on the total cost, i.e. we just need
to evaluate S(z; p) locally around the dominant singularity of E(z; p).

First of all, one needs to locate the dominant singularity of S(z; p) and
compare it with the z = 1

4 singularity of V (z). From Equation 44, we find
an exponential behaviour ∼ 4n of the coefficient of S(z; p), trivially due to the
entropy of Dyck walks of length 2n, thus, the singularity must be in z = 1

4 .
Notice that this agrees with the dominant singularity of V (z) (which also is,
essentially, a generating function of Dyck walks up to algebraic corrections),
so that both generating functions will combine to give the final average-cost
asymptotics.

At the dominant singularity, the power-law behaviour of the coefficients is
given by a generating function of the kind

S(z; p) = Ap +Bp(1− 4z)gp + o((1− 4z)gp) , (45)

where Ap encodes the regular terms at the singularity, and o((1−4z)gp) accounts
for all other singular terms leading to non trivial subleading corrections (among
them one finds power, logarithms. . . in the variable 1− 4z).

In fact, in such a simple situation as in our case, we expect a more precise
behaviour, S(z; p) = Ap(1 + O(1 − 4z)) + Bp(1 − 4z)gp(1 + O(1 − 4z)), where
we have two series of corrections, in integer powers, associated to the regular
and singular parts of the expansion around the singularity (up to the special
treatment of the degenerate case gp ∈ Z).

Notice that Bp and gp can be found by computing the asymptotic behaviour
of the coefficients of Equation 45

S
(p)
k ∼ Bp

Γ (−gp)
4kk−gp−1 =

2p√
π

4kkp−
3
2 , (46)

giving, by comparison with Equation 44,

gp =
1

2
− p Bp =

2p Γ
(
p− 1

2

)
√
π

. (47)

Nothing can be said on the coefficient Ap without performing the exact re-
summation of the generating function at the singularity (possibly, after having
subtracted a suitable diverging part).

This analysis results in an asymptotic expression for E(z; p):

E(z; p) ∼ 1

4

[
Ap(1− 4z)−

3
2 +

2p Γ
(
p− 1

2

)
√
π

(1− 4z)−(1+p)

]
(48)

for p 6= 1
2 , and

E
(
z; p = 1

2

)
=

1

4
(1− 4z)−

3
2

[
A 1

2 +ε +
1

ε

√
2

π
+

√
2

π
log

(
1

1− 4z

)
+ o(ε)

]

=
1

4
(1− 4z)−

3
2

[
A∗ +

√
2

π
log

(
1

1− 4z

)] (49)
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for p = 1
2 , where ε = p − 1

2 . The hypothesis of S(z; p) being non-singular in p
implies that Ap must cancel the 1

ε singularity, leaving a regular part

A∗ = lim
ε→0

[
A 1

2 +ε +
1

ε

√
2

π

]
. (50)

This set of results has remarkable consequences, as it unveils a certain univer-
sality feature for E(z; p). In fact, for all models in our large classes, the nature
of the dominant singularity of E(z; p) is the same, giving a universal asymptotic
scaling in N for the average cost of Dyck matchings. Moreover, in the p ≥ 1

2
regime, also the coefficient of the dominant singularity is universal.

We can now expand the generating function using standard techniques (Ap-

pendix B, [38]) and the fact that BN ∼ 4N
√
πN

, obtaining

EN ∼


Ap

2 N + o(N) p < 1
2

1√
2π
N logN + o(N logN) p = 1

2 .
2pΓ(p− 1

2 )

4Γ(p+1) N
1
2 +p + o(N

1
2 +p) p > 1

2

(51)

and in fact, more precisely,

EN ∼


Ap

2 N +
2pΓ(p− 1

2 )

4Γ(p+1) N
1
2 +p +O(1) p < 1

2
1√
2π
N logN +

(
A∗
2 +A′∗

)
N +O(logN) p = 1

2 .
2pΓ(p− 1

2 )

4Γ(p+1) N
1
2 +p +

Ap

2 N +O(N−
1
2 +p) p > 1

2

(52)

where the terms of the expansion are just the same for the p < 1
2 and p > 1

2
cases, but have been arranged differently, in the order of dominant behaviour.
The quantity A∗ has been defined in (50), for the behaviour of S(z; 1

2 ), while
the quantity

A′∗ =
γE + 2 log 2− 2√

2π
(53)

is a further (universal) correction coming from taking into account how S(z; 1
2 )

enters in E(z; 1
2 ), via V (z) (and γE is the Euler–Mascheroni constant).

The formulas above gives the precise asymptotics, up to relative corrections
of the order N−1. As a corollary, we have this very same behaviour in the
PPP model, as, from Lemma 4 and Corollary 1, we know that also the relative
corrections between ES and PPP models are of the order N−1.

For higher-order corrections, one would need to take into account more sub-
leading terms in Equation 45.

For the ES case the resummation of E(z; p) can be performed analytically
by writing the Catalan number in terms of Gamma functions, namely

Ck =
4k Γ

(
k + 1

2

)
√
π Γ(k + 2)

. (54)

giving

S(z; p) = Γ (p+ 1)F

(
p+1

2 , p+2
2

2

∣∣∣∣ 4z) (55)
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where F is the 2F1 hypergeometric function (a reminder is in Appendix B,
equation (86)). This allows for an explicit computation of the two non-universal
quantities in our expansion:

AES
p =

Γ
(

1
2 − p

)
Γ (p+ 1)

2p−1
√
π Γ (2− p) AES

∗ =

√
2

π
(5 log 2 + γE − 4) . (56)

note how the A∗ and A′∗ terms involve combinations of quantities of the same
algebraic nature. See Appendix B for the details of the derivation.

Similar but more complex resummations seem possible in the independent
spacing case, when the function f(x) is a Gamma distribution, f(x) = aga(ax)
for a ∈ N/2, and S(z; p) is obtained in terms of generalised hypergeometric
functions k+1Fk. However no exact resummation seems possible for the US case
(which would require a limit a → ∞ in this procedure). Nonetheless, we are
able to provide bounds on AUS

p .

Proposition 2

Γ
(

1
2 − p

)
Γ (p+ 1)

2p−1
√
π Γ (2− p) = AES

p ≤ AUS
p ≤ AUS,upper

p :=
2p+1

(1− 2p)Γ (1− p) . (57)

Note that, due to the fact Γ( 1
2 − p)Γ(1 − p) =

√
π 22p Γ(1 − 2p), the bounds

above can be rewritten as

1p

(2− 2p)p
2p+1

(1− 2p)Γ (1− p) ≤ A
US
p ≤

2p+1

(1− 2p)Γ (1− p) . (58)

Proof. We use Lemma 3 and the increasing monotony of xp to write

(2k + 1)p ≤ (2k + 1)p ≤ 2p(k + 3
2 − p)p ≤ 2p(k + 2− p)p (59)

so that we can bound AUSp from below by AESp , and from above by the regular

part of the expansion around z = 1
4 of the generating function

2p
∑
k≥0

Ck(k + 2− p)pzk . (60)

This can be easily resummed to a hypergeometric function

2p

Γ (2− p)F
(

1
2 , 1

2− p

∣∣∣∣ 4z) (61)

whose regular part is (see Appendix B)

AUS,upper
p =

2p+1

(1− 2p)Γ (1− p) . (62)

�
The ratio between the upper and lower bound, in the range p ∈ [0, 1

2 ] (where
the corresponding term in the expansion is leading), is rather near to 1: it
reaches 1 at the endpoints of the interval, and has a unique maximum, at the
value p solving 2ψ(2−2p) = ψ(2−p)+ψ(1+p), or, by using a duplication formula
for the digamma function, solving ψ(p + 1) − ψ(p + 1

2 ) = ln 4 − 1
(1−p)(1−2p) −
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π tan(πp). Numerically, the maximum is around p = 0.2626 . . ., and is valued
1.1445 . . .

The analogous treatment in the degenerate case p→ 1
2 gives bounds also on

AUS
∗ √

2

π
(log 2 + γE + 4 (log 2− 1)) ≤ AUS

∗ ≤
√

2

π
(log 2 + γE) . (63)

The fact that AUS
p ≥ AES

p , that we used above, is not isolated, but is instead
the consequence of the fact that the US distribution fUS(x) = δ(x− 1) and the
ES distribution fES(x) = e−xΘ(x) are ‘ordered’, fUS(x) � fES(x), w.r.t. the
notion of transportation order introduced in Appendix C. More generally, as
implied by Lemmas 6 and 7 in the appendix, if for two probability distributions
f1(x) � f2(x) we have determined Af1p ≤ Aubp and Af2p ≥ Albp (and the analogous
statement for A∗), then, for every distribution f1(x) � f(x) � f2(x) we have
that Albp ≤ Afp ≤ Aubp (and the analogous statement for A∗), with no need of
calculations (notice the inversion of upper and lower bounds due to the con-
cavity of our cost function). This is due to the fact that, for all k, the integral∫

dxxpf∗k(x) is bounded as∫
dxxpf∗k2 (x) ≤

∫
dxxpf∗k(x) ≤

∫
dxxpf∗k1 (x) (64)

(first, by Lemma 6, f∗k1 � f∗k � f∗k2 , then by Lemma 7 and the fact that xp is
concave, we obtain the inequalities above).

In particular, the US distribution is the bottom element of the transportation-
order semilattice, thus the upper bound in equation (57) is universal for all
independent-spacing models.

4 Numerical results and the average cost of the
optimal matching

Our main results concern the leading behaviour of the average cost of the Dyck
matching, which, of course, provides an upper bound to the average cost of the
optimal matching. The explicit investigation of small-size instances suggests
that the optimal matching is often quite similar to the Dyck matching, in the
sense that the symmetric difference between πopt and πDyck typically consists of
‘few’ cycles, which are ‘compact’, in some sense. Thus, a natural question arises:
could it be that the large-N average properties of optimal matchings and Dyck
matchings the same? If not, in which respect do they differ? In order to try to
answer this question, we have performed numerical simulations by generating
random instances with measure µPPPN , and we have computed the average cost
associated to the optimal and to the Dyck matching.

Figure 3 gives a comparison between the two average costs by plotting their
ratio as a function of N for various values of p. The corresponding fits seem to
exclude the possibility that the limit for large N of the ratio of average costs
go to zero algebraically in N (and also makes it reasonable that there are no
logarithmic factors, although this is less evident), that is, these data suggest the
content of Conjecture 1.
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Figure 3: Ratio of the average cost of optimal matchings over that of Dyck
matchings as a function of Nwp , where wp = −|p − 1

2 |. For p = 1
2 , the ratio

is plotted against 1/ logN . The dashed lines are the linear extrapolations for
Nwp → 0. The number of simulated instances at each value of (p, n) is 10000,
whenever n ≤ 4000, and 5000, whenever n = 5000 or 6000.
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In order to further test this hypothesis, we fitted the optimal average cost
to the same scaling behaviour found for the Dyck matching average cost, i.e.{

apN + bpN
1
2 +p p 6= 1

2

cN
(
logN + d

)
p = 1

2

(65)

fixing the scaling exponents and aiming to compute the scaling coefficients.
Notice that the term apN is leading for 0 < p < 1

2 , while bpN
1
2 +p is leading for

1
2 < p < 1. Figure 4 summarizes the fitted parameters.

For the Dyck matching, the fitted parameter for the leading scaling coeffi-
cient agrees perfectly with the computed coefficient, as expected. The coefficient
of the subleading term seems to agree with the computed coefficient in a less
precise way, probably due to stronger higher-order corrections. For the optimal
matching, the fitted coefficients behave qualitatively as the coefficients that we
have computed for the Dyck case, but the agreement is visibly not quantitative.
The fit seems to confirm the hypothesis that the two average costs have the
same scaling exponents with different coefficients.

To completely confirm such hypothesis, we suggest that lower bounds for
the cost could be computed. We expect such lower bounds to share the same
scaling as that found in this paper, but with different constants. We leave such
matter open for future work.
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5 Conclusion

In this paper we have addressed the random Euclidean assignment problem in
dimension 1, for points chosen in an interval, with a cost function which is an
increasing and concave power law, that is c(|x|) = |x|p for 0 < p < 1. We
introduced a new special matching configuration associated to an instance of
the problem, that we called the Dyck matching, as it is produced from the Dyck
bridge that describes the interlacing of red and blue points on the domain.

As this is a deterministic configuration, described directly in terms of the
instance, instead of involving a complex optimisation problem, this configuration
is much more tractable than the optimal matching. On top of this fact, we can
exploit a large number of nice facts, from combinatorial enumeration, which
provides us also with several results which are exact at finite size, this being,
to some extent, surprising. In particular, we computed the average cost of
Dyck matchings under a particular choice of probability measure (the one in
which the spacings among consecutive points are i.i.d. exponential variables).
Finally, we performed numerical simulations that suggest that the average cost
of Dyck matchings has the same scaling behaviour of the average cost of optimal
matchings. We leave this claim as a conjecture. A promising way to prove this
conjecture seems to be that of providing a lower bound on the average cost of
optimal matchings with the same scaling as our upper bound, by producing
“sufficiently many” or “sufficiently large” sets of edge-lengths which must be
taken by the optimal solution. If we assume our conjecture, this result allows to
fill in a missing portion in the phase diagram of the model, for what concerns the
scaling of the average optimal cost as a function of p (see Figure 5). These new
facts highlight a much richer structure that what could have been predicted
in light of the previous results alone, with the concatenation of four distinct
regions, and a special point with logarithmic corrections.

The case of uniformly spaced points needs further analysis in the region
p < 1/2. One can define an interpolating family of independent spacing models,
which encompasses both the ES and US cases, by taking as function f(s) the
Gamma distribution αgα(αs), for α > 0. For example, when α is an integer,
each si is distributed as a sum of α i.i.d. exponential random variables, each
with mean α−1. The ES case is, of course, α = 1, while, due to the central
limit theorem, the US model is the limit as α tends to infinity. This generalised
model appears to be treatable with the same technique that we employed for
the pure ES case whenever α is a half-integer: the generating function of the
average cost can be computed exactly in this case, and involves more and more
complicated hypergeometric functions as α grows (namely, if α = k/2, we have
a kFk−1 hypergeometric function). Performing singularity analysis over such
functions is a challenging task, which builds on classical results on generalised
hypergeometric functions (due to Nørlund and Bühring), that we leave for future
work.

On a parallel but distinct research direction, Dyck matchings may provide
a fruitful framework to study other interesting features of the assignment prob-
lem, such as the ground-state degeneracy at p = 1 or the properties of the
cycle decomposition of optimal matchings, w.r.t. the natural ordering along the
domain segment.
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Figure 5: Scaling exponent of the average optimal cost as a function of p, in
the case of cost function c(|x|) = +|x|p (that is, attractive case for p > 0 and
repulsive case for p < 0). In red, our conjectured result. In black, results
from [22]. Notice that we rescaled our result by a factor (2N + 1)−p, i.e. we
plotted the result for Ω = [0, 1].

A The coefficients vN,k

The goal of this section is to compute the coefficients vN,k, crucially used in
the calculation of the average cost of the Dyck matching, starting with equation
(36). These coefficients count, among the N edges of all the possible

(
2N
N

)
Dyck

matchings on 2N points, the number of edges e of length ‖e‖ = 2k + 1. That

is, vN,k
(N−1)!2

2(2N−1)! is the probability that, taking a random Dyck matching πDyck

uniformly, and an edge e ∈ πDyck uniformly, we have ‖e‖ = 2k + 1.
Dyck matchings correspond to Dyck ‘bridges’, w.r.t. the notation introduced

in Section 2.1. We proceed with the calculation by first computing the analogous
quantity on a restricted ensemble, associated to Dyck ‘excursions’ (that is, the
ordinary Dyck paths), which are Dyck bridges satisfying the extra condition∑j
i=1 σi ≥ 0 for all 1 ≤ j ≤ 2N .
In the whole class of Dyck paths of length 2N there are

rN,k :=
N − k + 1

2
Ck CN−k =

1

2
Ck BN−k (66)

edges of length ‖e‖ = 2k+ 1 (http://oeis.org/A141811), with 0 ≤ k ≤ n− 1.
These numbers obey the recursion relation, which determines them univocally
(together with the initial conditions)

rN,k = CkCN−k−1 +

N−1∑
m=0

[rm,k CN−m−1 + rN−m−1,k Cm] . (67)
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The recursion can be understood in terms of a first-return decomposition. If
we decompose the path into its first return, i.e. the portion between its left
endpoint and its first zero (say at position 2m+ 2, 0 < m < n− 1), and into its
tail, i.e. the remaining portion of the path on the right, then:

• the first term counts all the paths in which the link between the first step
and the first zero is of the required length. The multiplicity of paths in
which this situation arise is given by all the possible paths composing the
first excursion times all the possible paths composing the tail;

• the sum counts, for all the possible positions of the first zero, the possible
links of the required length hidden in the first excursion or in the tail of the
path. To count links of the required length hidden in the first excursion,
one can use rm,l itself, times all the possible tails Cn−m−1. The tail case
is symmetric.

It is easy to prove by induction that

rN,k = Ck RN−k−1 (68)

and the recursion reduces to

Rs = Cs + 2

s−1∑
m=1

Cs−mRm−1 . (69)

By introducing the generating function

R(z) :=
∑
n≥0

Rn z
n (70)

we get the equation
R(z) = C(z) + 2 z C(z)R(z) (71)

and therefore

R(z) =
C(z)

1− 2 z C(z)
= C(z)B(z) =

1

2 z

[
1√

1− 4 z
− 1

]
= − 1

2 z
+

1

2 z
+
∑
n≥0

Bn+1

2
zn =

∑
n≥0

Bn+1

2
zn

(72)

indeed
n∑
k=1

CkBn−k =
Bn+1

2
. (73)

It follows that

RN−k−1 =
BN−k

2
(74)

as announced.
The preliminary computation of the rN,k coefficients suggests to use the

same technique for the vN,k, and provides an ingredient to write a recursion for
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the vN,k:

vN,k = 2Ck BN−k−1 + 2

N−1∑
m=0

(rm,k BN−m−1 + vN−m−1,k Cm)

= 2Ck BN−k−1 +

N−1∑
m=k+1

Ck Bm−k BN−m−1 + 2

N−1∑
m=k+1

vm,k CN−m−1

= 2Ck BN−k−1 +

N−k−1∑
m=1

Ck BmBN−k−m−1 + 2

N−k−1∑
m=1

vm+k,k CN−k−m−1

(75)

and if we again set
vN,k := CkVN−k−1 (76)

we get

Vs = 2Bs +

s∑
m=1

BmBs−m + 2

s∑
m=1

Vm−1 Cs−m

=Bs +

s∑
m=0

BmBs−m + 2

s∑
m=1

Vm−1 Cs−m

=Bs + 4s + 2

s∑
m=1

Vm−1 Cs−m .

(77)

We introduce now the generating function

V (z) :=
∑
k≥0

Vk z
k (78)

to get the relation

V (z) =
1√

1− 4 z
+

1

1− 4 z
+ 2 z

1−
√

1− 4 z

2 z
V (z) (79)

so that

V (z) =
1

1− 4 z
+

1

(1− 4 z)
3
2

=
∑
k≥0

[
4k +

(2k + 1)!

(k!)2

]
zk , (80)

which is our seeked result. We can finally check that the recursion above is
indeed satisfied, as

vN,k =Ck

[
4N−k−1 +

(2N − 2k − 1)!

[(N − k − 1)!]2

]
=Ck

[
4N−k−1 +

(N − k)2

2 (N − k)
BN−k

]
= 4N−k−1 Ck + (N − k) rN,k .

(81)
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B Singularity analysis

Singularity analysis is a technique that allows to extract information on the co-
efficients of a generating function f(z) when an explicit series expansion around
z = 0 is not available. Roughly speaking, two main principles hold (see e.g. [38,
pg. 227]):

1. the moduli of the singularities of f dictate the asymptotic exponential
growth of its coefficients. If z = a is a singularity of f(z) =

∑
n≥0 fnz

n,

then fn ∼ |a|−n;

2. the nature of the singularities of f dictate the asymptotic sub-exponential
growth of its coefficients, i.e. they determine the (typically polynomial or
logarithmic) function θ(n) such that fn ∼ |a|−n θ(n).

We will specialise this analysis to the case of a single singularity, along the
real positive axis, which is pertinent to series with positive coefficients, and no
oscillatory behaviour. Generalizations of these principles (and of the related
theorem below) for the case of multiple singularities at the same radius hold as
well, but in our case are not relevant and will not be discussed.

The main result that we are going to need is a theorem (see [38, thm. VI.4])
that states that if f(z) is a “well-behaved” complex function analytic in 0, with
a singularity at z = ζ + i0 such that

f(z) = σ(z/ζ) + o(τ(z/ζ)) (82)

for some functions σ =
∑
n≥0 σnz

n and τ =
∑
n≥0 τnz

n in the span of the
reference set

S =
{

(1− z)α
(

1

z
log

1

1− z

)β ∣∣∣ α, β ∈ C
}
, (83)

then
fn = ζ−nσn + o(ζ−nτn) . (84)

Here “well behaved” means that there exists an indented disk of radius bigger
than ζ, with the indentation that specifically excludes z = ζ + i0, where f(z)
can be analytically continued. This means that the theorem is applicable to
functions with very general singularities (isolated poles, branch cuts, . . . ), and
in particular to hypergeometric functions.

The reference set S is composed of functions whose expansion can be com-
puted exactly thanks to generalizations of the binomial theorem. These func-
tions are ubiquitous in series expansions around poles of complex functions, so
that the theorem is extremely versatile.

In our specific case of the ES model, the generating function to study is of
the form

f(z) = s(4z)F

(
a, b
c

∣∣∣∣ 4z) (85)

where s(z) ∈ spanS is singular at z = 1, and F = 2F1 is the (2, 1)-hypergeometric
function defined by

F

(
a, b
c

∣∣∣∣ z) =
∑
n≥0

Γ(n+ a)

Γ(a)

Γ(n+ b)

Γ(b)

Γ(c)

Γ(n+ c)

zn

n!
, (86)
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or, equivalently, by

F

(
a, b
c

∣∣∣∣ z) =
∑
n≥0

sn
zn

n!
; (87)

sn+1

sn
=

(a+ n)(b+ n)

c+ n
; s1 = 1 . (88)

To expand and study the hypergeometric function around z = 1, a celebrated
‘inversion formula’ due to Gauss is available

F

(
a, b
c

∣∣∣∣ z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F

(
a, b

a+ b+ 1− c

∣∣∣∣ 1− z)+

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

(1− z)c−a−bF
(

c− a, c− b
c+ 1− a− b

∣∣∣∣ 1− z) (89)

This formula restates the seeked expansion around z = 0 in terms of an expan-
sion near the singularity at z = 1. As the hypergeometric function is analytic
in z = 0, the singular behaviour at z = 1 of the right-hand side combination is
described by the power-law prefactors in the inversion formula.

In our specific case, a = p+1
2 , b = p+2

2 and c = 2 with p ∈ [0, 1], giving

c − a − b = 1−2p
2 ∈ [− 1

2 ,
1
2 ]. Thus, the leading terms of the expansion of f(z)

are:

f(z) = s(4z)

[
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) +

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

(1− 4z)c−a−b

+ Θ((1− 4z), (1− 4z)c−a−b+1)

]
. (90)

The above expression is valid only for p 6= 1
2 . A limit procedure combines the

diverging Γ’s and the (1− 4z) term to give

f(z) = s(4z)

[
− 1

Γ( 3
4 )Γ( 5

4 )

(
ln(1− 4z) + 2γ + ψ0

(
3
4

)
+ ψ0

(
5
4

))
+ Θ((1− 4z) ln(1− 4z))

]
. (91)

where γ is the Euler-Mascheroni constant and ψ0 is the digamma function. The
limit is to be performed with care: each term must be written as a function
of ε = p − 1

2 and expanded in powers series. The expansion of the hyperge-
ometric functions must be performed using their definition. When everything
is expanded, o(ε) are discarded taking the limit ε → 0, and the leading terms
in the (1 − 4z) are found by taking n = 0 in the sum of the hypergeometric
function definition.

C Transportation order

Let us introduce a notion of ordering among distributions with the same average,
which is a version analogue (but slightly different) from the several ones already
existing in literature (such as second-order stochastic dominance, or variability
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order, or convex order, see e.g. [39]). We shall call our order the transportation
order.

If f(x) and g(x) are probability distributions on R with the same average,
we say that f � g if there exists a non-negative function h(x, y) such that, for
all x, ∫

dy h(x, y) = 1

∫
dy y h(x, y) = x (92)

and

g(y) =

∫
dxh(x, y)f(x) . (93)

We call h the transportation map of the pair (f, g).
We have two crucial facts:

Lemma 6 Convolution preserves transportation order, that is, if f1 � g1 and
f2 � g2, then f1 ∗ f2 � g1 ∗ g2.

Proof. Let us call h1 and h2 the associated transportation maps. We have

(f1 ∗ f2)(x) =

∫
dx′ f1(x′)f2(x− x′)

=

∫
dx′dy′dy h1(x′, y′)h2(x− x′, y − y′)f1(x′)f2(x− x′)

(94)

and

(g1 ∗ g2)(y) =

∫
dy′ g1(y′)g2(y − y′)

=

∫
dx′dy′dxh1(x′, y′)h2(x− x′, y − y′)f1(x′)f2(x− x′) .

(95)

This shows that the function

h(x, y) =


(
(h1f1) ∗ (h2f2)

)
(x, y)

(f1 ∗ f2)(x)
(f1 ∗ f2)(x) > 0

0 (f1 ∗ f2)(x) = 0

(96)

(where convolution of (hf) is both over x and y) is a candidate transportation
map for the pair (f1 ∗ f2, g1 ∗ g2), and is at sight a non-negative function. We
shall only verify that the conditions (92) are satisfied. We have∫

dy h(x, y) =
1

(f1 ∗ f2)(x)

∫
dx′dy′dy h1(x′, y′)h2(x− x′, y − y′)f1(x′)f2(x− x′)

=
1

(f1 ∗ f2)(x)

∫
dx′

(∫
dy1 h1(x′, y1)

)(∫
dy2 h2(x− x′, y2)

)
× f1(x′)f2(x− x′)

=
1

(f1 ∗ f2)(x)

∫
dx′ f1(x′)f2(x− x′) = 1

(97)
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and∫
dy (y − x)h(x, y) =

1

(f1 ∗ f2)(x)

∫
dx′dy′dy

× ((y − y′)− (x− x′) + y′ − x′)h1(x′, y′)h2(x− x′, y − y′)f1(x′)f2(x− x′)

=
1

(f1 ∗ f2)(x)

∫
dx′ f1(x′)f2(x− x′)

×
[(∫

dy1 (y1 − x′)h1(x′, y1)

)(∫
dy2 h2(x− x′, y2)

)
+

(∫
dy1 h1(x′, y1)

)(∫
dy2 (y2 − (x− x′))h2(x− x′, y2)

)]
= 0 .

(98)

�

Lemma 7 The average of convex/concave observables is monotone w.r.t. trans-
portation order, that is, if f � g and A(x) is convex, then

∫
dxA(x)f(x) ≤∫

dxA(x)g(x), and if A(x) is concave then the opposite inequality holds.

Proof. Let us call h the transportation maps. We have

Φ(x) :=

∫
dxA(x)g(x)−

∫
dxA(x)f(x) =

∫
dy (A(y)−A(x))h(x, y)f(x)

(99)

If A(x) is convex, then for all x there exists m(x) such that A(y) ≥ A(x) +
m(x)(y − x), thus

Φ(x) ≥
∫

dym(x)(y − x)h(x, y)f(x) (100)

As
∫

dy (y − x)h(x, y) = 0 for all x, and f(x) is non-negative, we get Φ(x) ≥ 0,
as was to be proven. For the concave case, of course it suffices to consider the
convex function −A(x). �
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