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Abstract

We exhibit an uncountable family of extremal inhomogeneous Gibbs measures of the low

temperature Ising model on regular tilings of the hyperbolic plane. These states arise as low

temperature perturbations of local ground states having a sparse enough set of frustrated edges,

the sparseness being measured in terms of the isoperimetric constant of the graph. This result

is implied by an extension of the article [9] on regular trees to non-amenable graphs. We argue

how we can deduce the extremality of an uncountable subset of the Series–Sinai states [30] at

low temperature.

AMS 2000 subject classification: Primary- 60K35 ; secondary- 82B20.

Keywords and phrases: Ising model, extremal Gibbs states, hyperbolic lattices, hyperbolic plane.
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1 Introduction

Since a pioneering work by Lund–Rasetti–Regge [24], the ferromagnetic n.n. Ising model on lattices

which are naturally embedded in the hyperbolic plane H2 has attracted considerable interest in the

physics literature. See also later the work by Rietman–Nienhuis–Oitmaa [28] or the more recent

applied work in [6]. These works rose many interesting mathematical questions about the structure

of Gibbs states on these lattices.

We recall that on the Euclidean lattice Z2 (corresponding to the tiling L4,4 below), a celebrated

result due to Aizenmann [1] and Higuchi [19] states that any Gibbs measure writes as a convex

combination of the pure phases µ+ and µ−. On Z3, the celebrated result of Dobrushin [11] exhibits

a countable family of (extremal [12]) non translation-invariant states at low temperature, with a

localised interface at a given height.

When the underlying graph is a d-regular tree, the Ising model possesses uncountably many

such interface states in the low temperature regime β > βc(d), as it was proved by Higuchi in the

late seventies [18] and by Bleher and Ganikhodaev [3] using a similar strategy afterwards. These

states are extremal and non tree-automorphism invariant.

In 2008, Rozikov and Rakhmatullaev [29] exhibit the so-called “weakly periodic” Gibbs measures,

which correspond to subgroups in the representation group of the Cayley tree. These states can

be thought of as generalizations of Dobrushin states, but with many interfaces, possibly countably

infinitely many, localised on a symmetric pattern.

In 2012, Gandolfo, Ruiz and Shlosman [14, 15], exhibit extremal inhomogeneous Gibbs measures

arising as low temperature perturbations of ground states, which have a sparse enough set of frus-

trated bonds. These states in general do not possess any symmetries of the tree. The two last

authors, together with Külske rigorously proved in [9] the statements of [14] and generalise them

to a broader setting: non-compact state space gradient models, models without spin-symmetry,

models in small random fields.

On hyperbolic lattices, Series and Sinai [30] exhibit an uncountable family of Gibbs states in-

dexed by the geodesics of H2, see Figure 1.1 on the left for an example. The result of Series and
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Sinai holds for the ferromagnetic n.n. Ising model defined on the vertices of the Cayley graph of

any finitely generated co-compact group of isometries of H2, see [30, Theorem 1].

More recently, Gandolfo–Ruiz–Shlosman [15], building on Series–Sinai’s paper, construct an un-

countable family of inhomogeneous Gibbs states with multiple rigid interfaces called the Mille-

feuilles.

In this paper we adapt the techniques of [9] to exhibit an uncountable family of infinite-volume

Gibbs measures, whose existence and extremality is proven by means of adequate Peierls estimates

and excess energy around local ground states.

We emphasize an important feature of Gibbs states of the Ising model on trees, which is the pres-

ence of a double transition: there exist a so-called “spin-glass” inverse temperature βSG ∈ (βc,∞)

above which the free state (obtained as the infinite-volume Gibbs measure with free boundary

conditions) is not extremal, and below which it is. This was shown in the sequence of works

[18, 2, 4, 22, 21]. Note that the free state is never extremal on Zd [5].

The extremal decomposition of the Ising free state on a tree is known to be particularly complex

as it involves uncountably many Gibbs measures on which the extremal decomposition measure

is supported, see the much more recent works of Gandolfo, Maes, Ruiz and Shlosman [13], and

of Coquille, Külske, Le Ny [8]. These states have a broken translational symmetry, and show

characteristics of a “glassy” behavior.

An analogous double transition occurs on hyperbolic lattices. Indeed, Wu [31] proved the exis-

tence of two inverse temperatures 0 < βc < βSG < ∞ such that: there exists a unique Gibbs state

(µ+ = µ−) at high temperatures β < βc; in the intermediate temperature regime µ+ ̸= µ− and

µf ̸= 1
2

(
µ+ + µ−) for β ∈ (βc, βSG); and at low temperatures µ+ ̸= µ− but µf = 1

2

(
µ+ + µ−) for

β > βSG. The free state is expected to be extremal in the intermediate temperature regime.
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Figure 1.1: A Series–Sinai state on L5,5 selected by γ, a bi-infinite geodesic of H2 (in black). Right:

broken edges of L5,5 (in dashed) traversed by a bi-infinite path in the dual graph (green), giving

rise to an extremal state at low temperature.
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2 Results

Let Lp,q be the tiling of the hyperbolic plane H2 such that each face is a regular p-gon and each

vertex has degree q.

Our main result is a sufficient condition for well-definiteness and extremality of the low temper-

ature Gibbs measures of the Ising model on Lp,q obtained via weak limits. These weak limits are

obtained by imposing boundary conditions which have a sufficiently sparse set of frustrated bonds,

but a priori no symmetry of the underlining Lp,q tilings, whence inhomogeneous. The key point

is an extension of the excess energy Lemma of [9] to connected, transitive and locally finite non-

amenable graphs of bounded degree, which include in particular the graph given by the 1-skeleton

of the hyperbolic lattices Lp,q, which we shall refer henceforth to simply by Lp,q by a slight abuse of

notation. Informally, this sufficient condition measures the excess energy with respect to a reference

configuration in terms of the isoperimetric constant of the graph.

For H ⊂ G a finite subgraph of G, denoting by ∂H the usual external boundary of H, the

isoperimetric constant of G is defined by

ICG
def
= inf

{
|∂γ|
|γ|

; γ a finite and non-empty subgraph of G

}
.

Its explicit value on Lp,q has been famously determined by Häggström–Jonasson–Lyons [17, Theorem

4.1], and we will denote it by ICp,q in this case, see below.

The Ising model on a locally finite graph G = (V,E) is defined as follows : take Λ ⊂ V be a

finite subset, and ω a fixed element in {−1,+1}Λ. Define the Hamiltonian H : {−1,+1}Λ → R as

Hω
Λ(σ) = −

∑
{i,j}∈E∩Λ

σiσj −
∑

{i,j}∈E∩∂Λ

σiωj

At inverse temperature β > 0, the Ising model in Λ with boundary condition ω is the probability

measure µω
Λ on ΩΛ = {−1, 1}Λ proportional to exp(−βHω

Λ(σ)). The set of infinite volume Gibbs

measures of the Ising model at inverse temperature β is the set of probability measures µ on

ΩΛ = {−1, 1}V such that the DLR equations hold:

Gβ = {µ ∈ M1({−1, 1}V ) : µ =

∫
dµ(ω)µω

Λ for any finite Λ ⊂ V }

The set Gβ is a Choquet simplex, and we denote its extremal elements by exGβ, see Section 3.1.

Note that the set of weak limits of sequences µω
Λ with Λ ↑ V and a fixed boundary condition ω

belong to Gβ. Let δmax ∈ N, and

ΩGS(δmax) := {ω ∈ {−1, 1}V : ∀i ∈ V, ♯{j ∈ V : j ∼ i and ωi ̸= ωj} ≤ δmax}

be the set of (infinite) spin configurations such that there are at most δmax frustrated edges em-

anating from any vertex. We call these δmax-inhomogeneous configurations, see Definition 3.2 for

details in the case of Lp,q. Then the following holds:
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Figure 2.1: Validity region (in green) of Corollary 2.2. The red line is the curve 1/p+ 1/q = 1/2.

Theorem 2.1 (Sufficient condition for extremality). Let ICG be the isoperimetric constant

of the connected, transitive and locally finite graph G. If the following sparsity condition holds

δmax <
1

2
ICG (2.1)

then, at sufficiently low temperature, for any configuration ω ∈ ΩGS(δmax), the infinite-volume

Gibbs measure µω of the Ising model on G, obtained as weak limit with boundary condition ω, is

well-defined and extremal.

Note that, for Theorem 2.1 to be useful, it is enough to get a (uniform and strictly positive) lower

bound on ICG, which is however a non-trivial task generally. When G is the graph given by the 1-

skeleton of Lp,q, the isoperimetric constant, denoted ICp,q, is explicitely known [17] and the following

corollary holds:

Corollary 2.2 (Uncountably many inhomogeneous extremal states for the Ising model

on Lp,q). The set of extremal Gibbs measures of the Ising model on Lp,q is uncountable at sufficiently

low temperatures for all p > 4, q ≥ 3 such that 1
p + 1

q < 1
2 and ICp,q > 2.

This validity region is represented on Figure 2.1.

The corollary is a consequence of the observation that, in the validity region, uncountably many

Dobrushin-like configurations (+ on one side of a separating line passing through the origin, − on

the other side) give rise to extremal states. Indeed, interfaces of the configurations on its dual graph

Lp,q can be represented as lines on the graph Lq,p, see Figure 1.1. Now, following Moran [26], let

us draw the “corona representation” of the graph Lq,p, see Figure 2.2. The point is that for q > 4,

Lq,p strictly includes a union of q trees of degree (q − 3) (which are glued at the origin). If one

chooses an infinite branch in one of these trees (an end), and another one in one of the q−3 opposite

trees (neighboring trees are forbidden), then we obtain a bi-infinite line γ which has the required

property: the sparsity condition (2.1) is fulfilled for the Dobrushin configuration separated by γ.
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Figure 2.2: LEFT : L4,5 in red, RIGHT : Corona representation of L5,4, taken from [26].

The quantity of such good interfaces γ is uncountable by the usual Cantor set argument for the

ends of trees (see e.g. [7, Ex. I.8 31]).

Series and Sinai left open the question of extremality of their “interface states”1 selected by

a continuum geodesics γ of H2, see [30, page 2, line -9]. A natural question is to wonder if all

the Series–Sinai states are extremal. Theorem 2.1 above gives a sufficient condition for Series-Sinai

states to be extremal: the bi-infinite geodesics γ of H2 should not cross more than
ICp,q

2 ≤ q
2−1 edges

emanating from any vertex of Lp,q. This condition can be nicely reformulated in terms of billiard

(hyperbolic) trajectories in a regular hyperbolic q-gone, by folding γ in a given fundamental domain

via the reflection law. The sufficient condition is that the biliard trajectory corresponding to γ in

the Dirichlet domain of Lp,q should never bounce more than q
2 − 1 times onto two adjacent faces.

A lemma due to Mostow [27] (see also [23, Lemma 3.43]) allows us to conjecture that uncountably

many Series-Sinai states are extremal. Indeed, a true geodesic of H2 is close to each of the Dobrushin

states constructed by means of quasi-geodesics in Corollary 2.2.

Structure of the paper. Section 3.1 and Section 3.2 contain the definition of the model and some

key notions. Section 3.3, which is a generalisation of the approach of [9], is devoted to the proof of

Theorem 2.1. A key novelty of this paper is the generalisation of the “excess energy lemma” of [9]

to rather general graphs, see Lemma 3.4, in terms of the isoperimetric constant. Section 3.4 focuses

on Lobatchevsky planes Lp,q, for which the isoperimetric constant is known, and allows to prove

uncountability of the set of extremal Gibbs states at low temperature.

1We quote here a statement in [31, Page 896], which might suggest that the same authors proved the extremality

of their states. However, the question is still open to the best of our knowledge.
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3 Proofs

3.1 Ising model

Let G = (V,E) be a simple, locally finite connected graph.

Measurable structure. We consider Ising spins: the single–spin space is Ω0 = {−1,+1}, endowed
with the σ-algebra given by the power set P({−1,+1}) and the a priori measure ρ0 =

1
2 (δ−1 + δ+1).

The (infinite-volume) configuration space is Ω = ΩV
0 , with events F =

(
P({−1,+1})

)⊗V
and

a priori (infinite-volume, product) measure ρ = (ρ0)
⊗V . For any two configurations σ, η ∈ Ω, we

consider the partial order σ ≤ η ⇐⇒ σv ≤ ηv for all v ∈ V . This partial order naturally induces

a notion of increasing function: a real-valued function f : Ω → R is increasing if σ ≤ η implies

f(σ) ≤ f(η) (as real numbers); and a notion of stochastic order between measures: µ ≤st ν if and

only if, for all increasing function f , Eµ[f ] ≤ Eν [f ].

We will denote by M+
1 the set of probability measures on (Ω,F), which represents the macro-

scopic states of the system.

Microscopic finite-volume Hamiltonian. For a finite subset of vertices Λ ⋐ V , a configuration

σ ∈ Ω and a boundary condition ω, we consider the following ferromagnetic, n.n. Ising Hamiltonian

HG
Λ (σ | ω) def

=
∑
v∼w
v,w∈Λ

1σv ̸=σw +
∑
v∼u

v∈Λ, u∈Λc

1σv ̸=ωu .

We will denote by H the Hamiltonian with free boundary conditions, i.e. restricted to finite volume

Hamiltonians with no interactions outside Λ.

Gibbs specification. For β > 0 (inverse temperature), we consider the following family of proba-

bility kernels (γΛ)Λ⋐V defined, for all event A ∈ F and boundary condition ω ∈ Ω, by

γΛ(A | ω) def
=

1

ZΛ(ω)

∫
Ω
1A(σΛωΛc)e−βH

(p,q)
Λ (σ|ω) (ρΛ ⊗ δωΛc

)
(dσ)

where ZΛ(ω) is a normalization constant, 1A(·) is the indicator function of the event A ∈ F , σΛ

is the restriction/projection of σ ∈ Ω to the finite set Λ (analogously for ωΛc), ρΛ = ⊗v∈Λρ0 is

the product a priori measure over Λ and δωΛc is the measure freezing all spins in Λc to the value

prescribed by the boundary condition ω. Note that in a similar way, Higuchi–Yosuda built the local

specification for the Ising model on the Sierpinski lattice [20].

3.2 Some definitions

Let G = (V,E) be a locally finite transitive graph.

Definition 3.1 (Contour wrt σ0 and compatibility). Let σ0 ∈ Ω. A contour is a connected

subgraph γ ⊂ G s.t. σγ = 1− σ0
γ. Two contours γ, γ′ are compatible if and only if γ △ γ′ = γ ∪ γ′,

where △ denotes the symmetric difference. We shall denote this compatibility relation by γ ∼ γ′.

For two configurations σ, η ∈ Ω, we shall denote by V (σ △ η) ⊂ V the set of sites at which σ

and η disagree, which might be finite or infinite. Thus σ △ η is a union of contours.

Then we can provide the following definition:
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Definition 3.2 (δmax-inhomogeneous configurations). For a configuration σ ∈ Ω, let Gb(σ) be

the subgraph of G induced by the set of broken bonds in σ, i.e. Eb(σ) = {e = (v, w) ∈ E ; σv ·σw =

−1} (with the obvious vertex set Vb(σ)). Let δbroken(σ) = maxv∈Vb(σ) deg(v) ≤ q. Let 0 ≤ δmax ≤ q.

Then

Ωp,q
GS(δmax) = {σ0 ∈ Ω ; δbroken(σ

0) ≤ δmax}) ⊂ Ω

is called the set of δmax-inhomogeneous configurations.

We shall recall from [9, Definition 3], the following:

Definition 3.3 (c-Stability). A configuration σ0 ∈ Ω is c-stable if there exists a strictly positive

constant c > 0 such that the following inequality holds

H(σ)−H(σ0) ≥ c · |V (σ △ σ0)|

for all σ ∈ Ω satisfying V (σ △ σ0) ⋐ V .

3.3 Proof of Theorem 2.1

Inspired by the work [9] about finite spin models on regular trees, we shall now prove the following:

Lemma 3.4 (Excess energy lemma). Let G be some connected graph. Let γ be a finite contour

wrt to a given configuration σ0 ∈ ΩGS(δmax) and let σ = σγσ
0
γc. Then the following holds

H(σ)−H(σ0) ≥ (ICG − 2δmax) |γ| ,

where ICG is the isoperimetric constant of the graph and δmax is the maximal degree in the set of

broken bonds.

Proof. First, by definition,

H(σ)−H(σ0) =
∑
v∈γ
w∈γc

v∼w

(
1σv ̸=σw − 1σ0

v ̸=σ0
w

)
.

Since the two configurations σ and σ0 differ precisely at the contour γ and by definition v ∈ γ,

w ∈ γc, we have σv = σw if and only if σ0
v ̸= σ0

w. Equivalently, 1σv ̸=σw = 1− 1σ0
v ̸=σ0

w
. Thus we can

write ∑
v∈γ
w∈γc

v∼w

(
1σv ̸=σw − 1σ0

v ̸=σ0
w

)
=

∑
v∈γ
w∈γc

v∼w

(
1− 2 · 1σ0

v ̸=σ0
w

)
= |∂γ| − 2

∑
v∈γ
w∈γc

v∼w

1σ0
v ̸=σ0

w
.

By definition of the isoperimetric constant we have a lower bound on the first term as |∂γ| ≥ ICG|γ|
and an upper bound on the second term by 2δmax|γ| (as in [9, Proof of Lemma 2]). This concludes

the proof.

Remark 3.5. In the case where G = Lp,q, we have ICp,q = (q−2)
√

1− 4
(p−2)(q−2) , see [17, Theorem

4.1]. Thus for any fixed q ≥ 3, we have limp→∞ ICp,q = (q−2) which recovers [9, Lemma 2] (to match

the notations one should put d = q−1 and u = U = 1 in [9, Eq. 3.9]). Also, ICp,q = cp,q ·
√

1
2 − 1

p − 1
q

(for some strictly positive constant cp,q), which equals zero only for the three Euclidean lattices.

8



The proof of Theorem 2.1, i.e. well-definition and extremality of µω for ω ∈ ΩGS(δmax) such that

δmax < ICG/2 follows now from Lemma 3.4 via convergence of the cluster expansion and asymptotic

decorrelation of polymer type events when β is large enough, as in [9]. For this we need the graph

G to be connected, transitive (to perform the weak limit), non-amenable (ICG > 0), and locally

finite (δmax < ∞). However, to actually have a non-empty sufficient condition for extremality, one

needs to at least have a positive lower bound on the Cheeger constant, and this task can be highly

non-trivial. Note that in [9] the argument also extends to a wide range of SOS-like models on trees,

thanks to the fact that contours have no interior on trees. Here we stick to the Ising model in order

to be able to perform the usual “spin-flip trick” when proving Peierls bounds.

3.4 Proof of Corollary 2.2

3.4.1 Lobatchevsky planes

The lattice structure is provided by a regular hyperbolic tiling of the hyperbolic plane (H2, dH2)

in which tiles are congruent, regular geodesic polygons with p sides of hyperbolic length equal to

1, meeting at vertices with degree q. Each such tiling is indexed by the Schläfli symbol {p, q}, for
integers p, q ≥ 3 s.t. 1

p +
1
q < 1

2 (see [16]). With a slight abuse of notation we will denote the family

of infinite q-regular metric graphs associated to the {p, q} tilings by Lp,q = (Vp,q, Ep,q, Fp,q).

Elements of the vertex set Vp,q are denoted by v, w, . . .. Two vertices v, w are said to be nearest

neighbors, denoted v ∼ w (or abbreviated n.n.) if and only if v and w are incident to the same

edge e ∈ Ep,q. We denote by dgr the graph distance on Lp,q. Equivalently, due to our embedding

convention, v and w are n.n. if and only if dH2(v, w) = 1.

Let G be a subgraph of (Vp,q, Ep,q). We write |G| for the number of vertices in G (≡ |V (G)|).
The set of emanating edges from G, which is a subset of Ep,q, is defined by ∂G = {e = (v, w) ∈
Ep,q ; v ∈ V (G) and w ̸∈ V (G)}. The inner boundary of G, which is a subset of Vp,q, is defined by

∂inG = {v ∈ V (G) ; (v, w) ∈ Ep,q and w ̸∈ V (G)}. For G1, G2 two given subgraphs of Lp,q, their

distance is defined by dgr(G1, G2) = minv∈G1
w∈G2

dgr(v, w).

For r ≥ 0 and a vertex v, the combinatorial ball of radius r centered at v is defined as follows

B(r, v)
def
= {w ∈ Vp,q ; dgr(v, w) ≤ r}. Analogously, the combinatorial sphere of radius r centered at

v is defined by ∂B(r, v)
def
= {w ∈ Vp,q ; dgr(v, w) = r}.

3.4.2 Corona representation

Lp,q admits a layer decomposition (see [25, Appendix A]) which allows to get exact formulas for

the number of vertices, faces and edges at or within a given layer from any given point z ∈ H2 via

a transfer matrix method. This method has been discovered independently by Rietman–Nienhuis–

Oitmaa [28, Eq. 2.14] and Moran [26, Pag. 159], who has also generalized it to other homogeneous

tilings of H2. It has been extensively used by the first author together with Vanessa Jacquier and

Wioletta M. Ruszel to exhibit the set of finite shape with minimal perimeter, whose exhaustion of

Lp,q actually realize ICp,q, see [10]. One consequence of this layer decomposition is an exact formula

for the number of vertices at or within a given layer. This number grows exponentially in the layer

number with a growth rate given by the largest eigenvalue of the transfer matrix.

9



L0

L1

L5,4

• o

Figure 3.1: Layer decomposition for L5,4 (first two layers). In each layer, vertices are of two kind

(in blue and black here) allowing counting by induction, see [28, 26] for details.

We will recall here these results for face–centered lattices Lp,q in which z is the barycenter of

the fundamental polygon and it is put at the origin o of H2 (see Figure 1.1). Also, we will recall

the layer decomposition for vertices of Lp,q; the layer decomposition for faces and edges of Lp,q is

analogous but not needed for our current purposes.

The zero layer L0 is the set of vertices v ∈ Vp,q of the face containing o. The first layer L1 is the

set of vertices of the faces sharing a vertex or edge with the central face in L0, which are not in L0;

and so on ad libitum (see Figure 3.2). Let Sn;p,q = #{v ∈ Vp,q ; v ∈ Ln} and Bn;p,q =
∑n

i=0 Si;p,q be

respectively the cardinal of layer n and the total number of vertices within layer n (layer included).

The corona representation of Lp,q goes as follows, see Figure 1.1 on the right for an example on

L6,5:

• From the origin, draw p outgoing edges, and their p end-vertices in black (first generation).

• Draw a circle around them (first circle, consisting of p vertices and p− 1 edges).

• Add q − 3 blue vertices on each edge of the circle (triangle→ q-gone).

• Draw p− 3 outgoing edges from the black vertices of the circle, and p− 2 outgoing edges from

the blue vertices of the circle, and draw all their end-vertices in black (second generation).

• Draw a new circle around this second generation of vertices (second circle).

• Add q − 3 blue vertices on each edge whose endpoints are attached to the same vertex of

the first circle (triangle→ q-gone), and q − 4 blue vertices on each edge whose endpoints are

attached to different vertices (4-gone→ q-gone) of the first circle.

• Draw p−3 outgoing edges from the black vertices of the second circle, p−2 outgoing edges from

the blue vertices of the second circle, and all their end-vertices in black (third generation).

10



o
•

o

Figure 3.2: LEFT: L5,6 in red, its dual L6,5 in black, and two of the embedded ternary trees (glued

at o) in green. RIGHT : The corona representation of L6,5.

• Repeat the procedure ad libitum.

Note that for p > 4, the corona representation draws a union of p disjoint trees of degree p− 3,

which are glued at the origin, and follow the edges linking one circle to the next one.

3.4.3 Building interfaces ensuring the sparsity condition

Interfaces of the configurations on the graph Lp,q can be represented as lines on the graph Lq,p, see

Figure 1.1. We will now build uncountably many Dobrushin configurations which fulfill the sparsity

condition (2.1). In the corona representation Lq,p, we just proved that for q > 4, there is a union of

q trees of degree q − 3 (which are glued at the origin).

Choose an infinite branch in one of these trees, and another one in one of the q − 3 opposite

trees (neighboring trees are forbidden), then we obtain a bi-infinite line γ which do not cross more

than one edge emanating from each vertex of the primal graph Lp,q.

Put + spins on one side of γ and − spins on the other side. This forms a Dobrushin configuration

ω±
γ , which belongs to Ωp,q

GS(1).

Thus, whenever ICp,q > 2, the sparsity condition (2.1) holds, and by Theorem 2.1 the infinite-

volume Gibbs measure, obtained as weak limit with boundary condition ω±
γ , is well-defined and

extremal.

The quantity of such good interfaces γ is uncountable by the usual Cantor set argument (see e.g.

[7, Example 8.11.5]). This finishes the proof of Corollary 2.2.
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3.5 Perspectives

We leave the generalization of this question to the ferromagnetic nearest neighbors Ising model

defined on Cayley graphs of finitely generated co-compact group of isometries of Hd (d ≥ 2) to

future work. We also leave the study of the multivariate generating functions associated to the

layer construction of Rietman–Nienhuis–Oitmaa/Moran to future work.
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[17] Häggström, O., Jonasson, J., and Lyons, R. Explicit isoperimetric constants and phase

transitions in the random-cluster model. The Annals of Probability 30, 1 (2002), 443–473.

[18] Higuchi, Y. Remarks on the limiting Gibbs states on a (d + 1)-tree. Publications of the

Research Institute for Mathematical Sciences 13, 2 (1977), 335–348.

[19] Higuchi, Y. On the absence of non translation invariant Gibbs states for the two dimensional

Ising model. In Colloquia Math. Sociatatis Janos Bolyai (1979), vol. 27, Random fields, pp. 517–

534.

[20] Higuchi, Y., and Yoshida, N. Ising models on the lattice Sierpinski gasket. Journal of

Statistical Physics 84 (1996), 295–307.

[21] Ioffe, D. Extremality of the disordered state for the ising model on general trees. In Trees:

Workshop in Versailles, June 14–16 1995 (1996), Springer, pp. 3–14.

[22] Ioffe, D. On the extremality of the disordered state for the ising model on the bethe lattice.

Letters in Mathematical Physics 37 (1996), 137–143.

[23] Kapovich, M. Hyperbolic manifolds and discrete groups, vol. 183. Springer Science & Business

Media, 2001.

[24] Lund, F., Rasetti, M., and Regge, T. Dimer and Ising models on the Lobachevskii plane.

Teoreticheskaya i Matematicheskaya Fizika 33, 2 (1977), 246–271.

[25] Mertens, S., and Moore, C. Percolation thresholds in hyperbolic lattices. Physical Review

E 96, 4 (2017), 042116.

[26] Moran, J. F. The growth rate and balance of homogeneous tilings in the hyperbolic plane.

Discrete Mathematics 173, 1-3 (1997), 151–186.

13



[27] Mostow, G. D. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies,

Princeton University Press, 1973.

[28] Rietman, R., Nienhuis, B., and Oitmaa, J. The Ising model on hyperlattices. Journal of

Physics A: Mathematical and General 25, 24 (1992), 6577.

[29] Rozikov, U., and Rakhmatullaev, M. Description of weakly periodic Gibbs measures for

the Ising model on a Cayley tree. Theoretical and Mathematical Physics 156 (2008), 1218–1227.

[30] Series, C., and Sinai, Y. Ising models on the Lobachevsky plane. Communications in

Mathematical Physics 128 (1990), 63–76.

[31] Wu, C. Ising models on hyperbolic graphs II. Journal of Statistical Physics 100 (2000),

893–904.

14


	1 Introduction
	2 Results
	3 Proofs
	3.1 Ising model
	3.2 Some definitions
	3.3 Proof of thm.speis
	3.4 Proof of cor.umies
	3.4.1 Lobatchevsky planes
	3.4.2 Corona representation
	3.4.3 Building interfaces ensuring the sparsity condition

	3.5 Perspectives


