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Abstract

We study the limit in low intensity of Poisson–Voronoi tessellations in hyperbolic spaces Hd

for d ≥ 2. In contrast to the Euclidean setting, a limiting nontrivial ideal tessellation Vd appears

as the intensity tends to 0. The tessellation Vd is a natural, isometry-invariant decomposition

of Hd into countably many unbounded polytopes, each with a unique end. We study its basic

properties, in particular, the geometric features of its cells.
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[The Cheshire cat] vanished quite slowly, beginning with the end of the tail, and ending

with the grin, which remained some time after the rest of it had gone.

“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without a cat! It’s

the most curious thing I ever saw in my life!”

— Alice’s Adventures in Wonderland, Lewis Carroll

1 Introduction

Voronoi diagrams go back to Descartes. Their uses span the sciences, social sciences, and engineering.

Poisson–Voronoi tessellations are ubiquitous objects in stochastic geometry [Møl94, Chapter 4]. They

have been used to model real-world networks (see [BB+10, Section 19.3.2] for an introduction and

[BBK05] for a concrete application) and have also been studied for their purely theoretical properties

and their intrinsic beauty. The recent works [Bhu19, BCP22] independently study properties of

Poisson–Voronoi tessellations in hyperbolic space in the limit when the intensity of their nuclei tends

to 0. Both these works also mention without proof the existence of a limiting tessellation. Here,

we prove existence of this limit and study its fundamental properties. The existence of a nontrivial

limit is surprising when one’s intuition is grounded in Euclidean space.

Ideal Poisson–Voronoi tessellations. Let (E, dE ,o, µ) be an abstract, locally compact metric

space equipped with an origin point, o, and an infinite Radon measure, µ, such that the spheres

centered at o have measure 0. For λ > 0, we consider a Poisson cloud of points X(λ) = (X
(λ)
1 , X

(λ)
2 , . . .)
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with intensity λ · µ (the points being ranked by their increasing distances to the origin of E). This

point process enables us to define the Voronoi diagram

Vor(X(λ)) := (C1, C2, . . .)

relative to X(λ), which is a tiling of E where the tile (or cell) Ci is made of the points of E that

are closer (in the weak sense) to X
(λ)
i than to any other X

(λ)
j . When the underlying space has

polynomial growth (e.g., Rd equipped with Lebesgue measure), the diagrams Vor(X(λ)) usually

degenerate towards the trivial tiling (E) when the intensity λ tends to 0. However, if the underlying

space has exponential growth, for example on d-regular metric trees with d ≥ 3 equipped with the

length measure, or on d-dimensional hyperbolic spaces d ≥ 2 equipped with their volume measure,

then Vor(X(λ)) may converge in distribution as λ→ 0 to a nontrivial random tiling, which we name

the ideal Poisson–Voronoi tessellation. We refer to Section 2, and in particular Theorem 2.3, for

details of the convergence.

Ideal Poisson–Voronoi tessellations on hyperbolic spaces Hd. In particular, our general

convergence result, Theorem 2.3, applies when (E, dE ,o, µ) is the hyperbolic space Hd equipped

with its volume measure and yields:

Theorem 1.1 (Convergence of low-intensity tessellations). Let X
(λ)
d be a Poisson point

process with intensity λ > 0 on the d-dimensional hyperbolic space Hd with d ≥ 2. Then we have the

following convergence in law

Vor
(
X

(λ)
d

)
⇒ Vd.

The limiting tessellation Vd is called the ideal Poisson–Voronoi tessellation of Hd; see Fig. 1.1.

Figure 1.1: From [BCP22]. Left to right: Poisson–Voronoi tessellations of the hyperbolic plane (in the

unit disk model) with decreasing intensity. Their limit (on the right) is V2, the ideal Poisson–Voronoi

tessellation of the hyperbolic plane.

By tessellation in Rd or Hd, we mean a locally finite collection of nonempty, closed sets (called

“tiles” or “cells”) that are (geodesically) convex, have nonempty and pairwise disjoint interiors, and

that cover the space. The cells are then (possibly unbounded) polytopes, i.e., each cell is the convex

hull of a locally finite set of points (its vertices)—equivalently, each cell is the intersection of a locally
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finite set of closed half-spaces (see, e.g., [SW08, Lemma 10.1.1] for tessellations in Rd; the same

follows for tessellations in Hd by using the Beltrami–Klein model, where every complete, totally

geodesic submanifold of dimension k is the intersection of the Euclidean unit ball Bd with an affine

Euclidean plane of dimension k [Rat06, Section 6.3]). The faces of a cell are the intersections of

the cells with one or more of its supporting (geodesic) hyperplanes. In our case, the intersection

of two cells will always be a face of each cell, or empty; such a tessellation is called face-to-face .

Furthermore, in our case, a k-face will always be the intersection of d− k + 1 cells, but no fewer and

no more; such a tessellation is called normal .

The limiting tessellation Vd can be constructed from a Poisson process of points on the boundary

∂Hd cross the real numbers, the second coordinates of which we call delays. Equivalently, this

product is the space of horospheres in Hd. In coordinates, we provide the following explicit descriptions

of Vd as a multiplicatively weighted Voronoi diagram, where Leb denotes Lebesgue measure on the

appropriate spaces, Sd−1 := ∂Bd, and | · | denotes the Euclidean norm:

Theorem 1.2 (Coordinate description of Vd). For the unit ball model of Hd, let N be a

Poisson point process with intensity Unif ⊗ Leb on Sd−1 × R+, while for the upper half-space model

of Hd, let N be a Poisson point process with intensity Leb⊗ Leb on Rd−1 ×R+. In both models, the

ideal Poisson–Voronoi tessellation Vd consists of the cells
{
C(θ, r) ; (θ, r) ∈ N

}
defined by

C(θ, r) :=
{
z ; r1/2(d−1)|z − θ| ≤ s1/2(d−1)|z − ψ| for all (ψ, s) ∈ N

}
. (1.1)

This enables us to study the stochastic properties of Vd directly. In particular, we prove that Vd
is a natural cell decomposition of Hd in the following sense:

Theorem 1.3 (Tiles have one end). Almost surely,

• Vd is a tessellation of Hd;

• each tile of Vd is unbounded with an infinite number of bounded faces and with a unique limit

point on the ideal boundary of Hd, which we refer to as its end;

• Vd is face-to-face and normal; and

• the law of Vd is invariant under every isometry of Hd.

In particular, in dimension 2, the union ∂V2 of the boundaries of the tiles is a random embedding of

the 3-regular tree in H2 with geodesic edges whose law is invariant under isometries of the hyperbolic

plane.

The last bullet point of Theorem 1.3 follows from the Möbius invariance of the hyperbolic measure,

hence of the law of the Poisson cloud X
(λ)
d for each λ > 0. The third point is also classical in

stochastic geometry and is in particular a well-known fact for standard Poisson–Voronoi tessellations

in Euclidean space; see [SW08, Theorems 10.2.1 and 10.2.3].

We denote by Cd the cell of Vd containing the origin of Hd, which, by the Möbius invariance

of Vd, has the same law as the cell of any other fixed point. We refer to Cd as the zero cell ; see

Figure 1.2. Through the zero cell, we investigate the fine properties of the tiles of Vd. As we stated

in Theorem 1.3, the cell Cd almost surely has a unique end ∈ ∂Hd, and once we view Cd in the upper
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Figure 1.2: Simulations of the cell of Vd containing the origin in the Poincaré ball model of Hd for

d = 2 (left) and d = 3 (right), obtained by sampling from (1.3) conditionally on the median value
(d−1)
cd

log 2 of Ed.

half-space model of Hd with its unique end sent to ∞ and the origin sent to (0, 0, . . . , 0, 1), its law

can be described in a surprisingly simple and appealing way using a deposition model : Let Ed be

a random variable with law Exp
(
cd
d−1

)
, where

cd := 22−d π
d
2

Γ
(
d
2

) (1.2)

is 21−d times the Euclidean volume of Sd−1. Conditionally on Ed, let Πd be a Poisson cloud of

hemispheres in Rd−1 × R+ with centers x ∈ Rd−1 and radii ρ > 0 having intensity

2 · Ed · dx ρ1−2ddρ1
ρ≤
√

1+|x|2 . (1.3)

Theorem 1.4 (Description of Cd). The law of Cd is given by the complement of all open

hemispheres whose centers and radii are given by Πd; see Figure 1.3.

In particular, if one forgets about the condition 1
ρ≤
√

1+|x|2 in the intensity (1.3), which excludes

only finitely many hemispheres a.s., one sees that Cd has almost the same law as a random dilation of

the complement of balls whose centers and radii have intensity ρ1−2ddρ dx. This complement is the

epigraph of a random continuous field over Rd−1 whose marginal law is made explicit in Proposition

5.4. This field and these balls have a law that is invariant under all Euclidean isometries of Rd−1

and yields after orthogonal projection a random tessellation of Rd−1 that is a special case of the

Laguerre tessellations studied in [GKT22b].

The above Poissonnian construction of the zero cell Cd is the main tool to study various

distributional quantities such as:

• the hole probability (Proposition 5.1) for Cd,
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Figure 1.3: Representation of a finite portion of ∂C3 (top) and ∂C2 (bottom) in the upper half-space

models in dimensions 3 and 2 (conditional as in Figure 1.2). In both cases, the portions go from −10

to 10 in the coordinate directions on the ideal boundary. The origin is shown on top as a yellow dot

with a vertical line below it, while the origin is shown as a black dot on bottom. Note that below

the boundary of the zero cell lie all the other cells. A portion of such in dimension 3 is shown in

Figure 1.4.

Figure 1.4: A vertical slice through the origin showing a portion of the boundary of the zero cell as

well as those cells that intersect the vertical plane of the slice. The origin is shown as a black dot

inside a white dot.

• the stationary distribution of the height and azimuth field describing the deposition model

(Proposition 5.4),

• the vertex intensity of Cd in the Euclidean stationary model (Proposition 5.12).

By passing to the limit λ→ 0 in several computations made for nonzero intensity, Poisson–Voronoi

tessellations of Hd [GKT22a], we also compute explicitly the k-dimensional face intensities for
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0 ≤ k ≤ d − 1 of the tiling Vd in Theorem 4.7. At certain points in this work, we study the dual

complex to Vd, the ideal Poisson–Delaunay tessellation.

The paper is structured as follows: In Section 2, we set up an abstract framework for convergence

of Voronoi tessellations whose points converge to the ideal boundary of a space. Section 3 establishes

the main properties of the ideal Poisson–Voronoi tessellations in d-dimensional hyperbolic spaces,

along with all the theorems stated in the introduction. At the end of Section 3, we develop the

basic properties of the ideal Poisson–Delaunay tessellation. We then turn to precise computations of

various distributions related to Vd and to Cd. Using [GKT22a], we compute the k-face intensities in

Section 4, while we focus on the cell of the origin, Cd, in Section 5. Section 6 treats the case for

regular trees and recalls some results obtained by [Bhu19]. Finally, Section 7 provides some future

directions.
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around and during the conception of [BCP22]. The work of M.A. and N.C. was supported by

ANR RanTanPlan and ERC Consolidator Grant SuperGRandMA (Grant No. 101087572). N.E.

was partially supported by the CNRS grant RT 3477, Geométrie Stochastique. R.L. was partially

supported by NSF grants DMS-1612363 and DMS-1954086 and the Indiana University Institute

for Advanced Study. M.Ü. was supported by grants from the Fondation Mathématique Jacques

Hadamard (FMJH).

2 Abstract convergence results

In this section, we give an abstract point of view on the convergence of Voronoi diagrams based

on the concept of the Gromov boundary of a metric space (E, d). The main idea is that building a

Voronoi diagram requires us to compare only differences of distances, rather than actual distances.

In particular, the coming Lemma 2.3 is purely deterministic and could be applied to many different

spaces.

2.1 Gromov boundary and ideal Voronoi diagrams

Let (E, d) be a locally and boundedly compact metric space. The set C(E) of real-valued continuous

functions on E is endowed with the topology of uniform convergence on every compact subset of E.

We define an equivalence relation on C(E) by declaring two functions equivalent if they differ by an

additive constant; the associated quotient space endowed with the quotient topology is denoted by

C(E)/R. Following [Gro81], one can embed the original space E in C(E)/R using the injection

i :
E −→ C(E) −→ C(E)/R
x 7−→ dx := d(x, ·) 7−→ dx .

The Gromov compactification of E is then the closure of i(E) in C(E)/R. The Gromov

boundary or horoboundary ∂E of E is composed of the points in the closure of i(E) in C(E)/R
that are not already in i(E). The points in ∂E are called horofunctions; see [Gro81]. They

are obtained as limits of shifted distance functions d(xn, ·)− d(xn,o) for some sequence of points

xn →∞. Let us denote a point on the Gromov boundary by θ and fix the associated representative
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function dθ(·) so that dθ(o) = 0 for all θ ∈ ∂E. In particular, if θ, θ′ ∈ ∂E and x ∈ E, one can make

sense of the “difference of distances”

dθ(x)− dθ′(x) ∈ R. (2.1)

We will then enhance the Gromov boundary by the addition of a second coordinate, real numbers

that we call the delays, yielding the extended ideal boundary , ∂̂E = ∂E × R. Extending the

preceding display, if x ∈ E and (θ, δ), (θ′, δ′) ∈ ∂̂E are two extended ideal points, we say that x is

closer to (θ, δ) than to (θ′, δ′) if

dθ(x)− dθ′(x) ≤ δ′ − δ.

Letting

d
(
x, (θ, δ)

)
:= dθ(x) + δ,

which we call the linear separation of x from (θ, δ) and which is real valued, the condition becomes

d
(
x, (θ, δ)

)
≤ d

(
x, (θ′, δ′)

)
.

The level sets of a horofunction dθ are called horospheres at θ. A horosphere is thus a limit

of spheres in the sense that dθ(x) = δ iff there are spheres containing x centered at points xn → θ

with radii d(xn,o) + δn and δn → δ. The horosphere d−1
θ

[
{δ}
]

is also the zero set of d
(
·, (θ,−δ)

)
. If

φ is an isometry of (E, d), then φ acts naturally on ∂E mapping one horosphere to another in the

following way, as shown from the definition: for all x ∈ E,

dφ(θ)

(
φ(x)

)
= dθ(x)− dθ

(
φ−1(o)

)
. (2.2)

Hence, if we write

φ(θ, δ) :=
(
φ(θ), δ + dθ(φ

−1(o))
)
, (2.3)

then we obtain an action of φ on the space of horospheres, ∂̂E, that preserves linear separation:

∀x ∈ E ∀(θ, δ) ∈ ∂̂E d
(
φ(x), φ(θ, δ)

)
= d

(
x, (θ, δ)

)
. (2.4)

(Ideal) Voronoi diagrams. Let us first recall the basic definition of Voronoi diagrams. Fix a

sequence of distinct points (xi ; i ≥ 1) ∈ E, called the nuclei . We will always suppose that the

nuclei xi are ranked by their increasing distances to the origin of E and that d(o, xi) → ∞. The

Voronoi diagram Vor(xi ; i ≥ 1) = (Ci ; i ≥ 1) is defined via its tiles Ci associated to xi via

Ci :=
{
w ∈ E ; ∀j ≥ 1 d(w, xi) ≤ d(w, xj)

}
.

We also define the “open” version of the tiles denoted by C◦i when the weak inequality is replaced

by a strict one. Notice that the C◦i are disjoint; since we imposed that d(o, xj)→∞ as j →∞, it

follows that C◦i are indeed open sets.

The framework above enables us to define diagrams using nuclei that are not points of E but

extended ideal points of ∂̂E. More precisely, if θ := (θi ; i ≥ 1) is a sequence of boundary points on

∂E and δ := (δi ∈ R ; i ≥ 1) is an increasing sequence of reals tending to ∞, we define the (ideal)

Voronoi diagram associated to (θ, δ) as follows:
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Definition 2.1 (Ideal Voronoi diagrams). The Voronoi diagram Vor
(
(θi, δi) ; i ≥ 1

)
is given

by its tiles (Ci ; i ≥ 1), where

Ci :=
{
x ∈ E ; ∀j 6= i d

(
x, (θi, δi)

)
≤ d

(
x, (θj , δj)

)}
,

and similarly with C◦i defined via a strict inequality.

We say that the diagram is nondegenerate if C◦i = Ci for every i ≥ 1. Notice that since we

impose that δi →∞, every compact K ⊂ E intersects only a finite number of tiles of the diagram,

and the tiles C◦i are again open. Also, the diagram is invariant under a shift of all delays (δi ; i ≥ 0)

because it depends only on the differences of linear separations.

2.2 Convergence of diagrams

As we will see, the concept of Gromov boundary and ideal diagrams is well suited for studying

convergence of standard Voronoi diagrams. We will use the Fell topology on the collection of closed

subsets of E, which is generated by the sets {F ; F ∩ C = ∅} for compact C ⊂ E and the sets

{F ; F ∩G 6= ∅} for open G ⊆ E. This topology makes the collection of closed subsets compact,

while if the empty set is omitted, then it becomes locally compact (see [SW08, Section 12.2]).

Definition 2.2 (Convergence of diagrams). We will say that the sequence of diagrams(
(C

(k)
i ; i ≥ 1)

)
k≥1

converges to (Ci ; i ≥ 1) as k → ∞ if for each i ≥ 1, the closed subsets

C
(k)
i converge to the closed subset Ci in the Fell topology.

The following lemma, roughly speaking, entails the continuity of the Voronoi-diagram mapping

with respect to the convergence of nuclei towards the extended Gromov boundary ∂̂E.

Theorem 2.3. Suppose that for each k, we have a sequence of points (x
(k)
i ; i ≥ 1) ranked by

increasing distances to o on a space (E, d) that together satisfy the two conditions:

(i) (Convergence to the boundary) For all i ≥ 1, we have convergence in the Gromov sense

x
(k)
i −−−→

k→∞
θi ∈ ∂E.

(ii) (Convergence of proto-delays) For all i ≥ 1, we have

d(x
(k)
i ,o)− d(x

(k)
1 ,o) −−−→

k→∞
δi.

Furthermore, δi →∞ as i→∞.

(iii) (Nondegeneracy) Vor
(
(θi, δi) ; i ≥ 1

)
is nondegenerate.

Then the Voronoi diagrams Vor(x
(k)
i ; i ≥ 1) converge as k →∞ to the ideal diagram Vor

(
(θi, δi) ; i ≥ 1

)
.

Remark 2.4 (Degenerate cases). To see that the third condition in the lemma is needed, suppose

that E = [0,∞), so that ∂E consists of a single point, θ. Then x
(k)
i → θ as soon as d(x

(k)
i ,o)→∞

as k →∞. If d(x
(k)
1 ,o) < d(x

(k)
2 ,o) for each k and the limiting delays satisfy 0 = δ1 = δ2 < δ3 ≤ · · · ,

then the tiles Ci of the limiting degenerate ideal diagram Vor
(
(θ, δi) ; i ≥ 1

)
are C1 = C2 = E and

Ci = ∅ for i ≥ 3, yet C
(k)
2 → ∅ as k →∞.
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Proof. Denote by C
(k)
i (resp., C

◦,(k)
i ) the closed (resp., open) tiles of Vor(x

(k)
i ; i ≥ 1) and by Ci

(resp., C◦i ) those of Vor
(
(θi, δi) ; i ≥ 1

)
. Since the space of closed subsets of E endowed with the

Fell topology is itself compact, we can suppose up to passing to a subsequence that we have

C
(k)
i −−−→

k→∞
Ci

in the Fell topology for some closed subset Ci, and our goal is now to show that Ci = Ci. We define

the proto-horofunctions

d
x
(k)
i

(z) := d(x
(k)
i , z)− d(x

(k)
i ,o),

as well as the proto-delays δ
(k)
i := d(x

(k)
i ,o)− d(x

(k)
1 ,o). A given point z ∈ E thus belongs to C

(k)
i

iff for all j 6= i, we have the inequality

d(x
(k)
i , z)− d(x

(k)
j , z) = d

x
(k)
i

(z)− d
x
(k)
j

(z) + δ
(k)
i − δ

(k)
j ≤ 0, (2.5)

and similarly for C
◦,(k)
i with a strict inequality. By our first two assumptions, the function of z in

the last display converges uniformly on compact sets towards

dθi(·)− dθj (·) + δi − δj .

It follows immediately that we have Ci = limk→∞C
(k)
i ⊆ Ci: indeed, if z ∈ limk→∞C

(k)
i , then there

are z
(k)
i ∈ C(k)

i satisfying (2.5) with z
(k)
i → z, so that passing (2.5) to the limit, we deduce that

z ∈ Ci. For the other inclusion, we show that C◦i ⊂ Ci and use the non-degeneracy C◦i = Ci to

conclude. If z ∈ C◦i , then for every fixed j 6= i, (2.5) holds with strict inequality for all large k,

whence z ∈ C(k)
i for all large k. This gives z ∈ Ci, as desired.

3 Ideal Poisson–Voronoi tessellations on hyperbolic spaces

As mentioned in the introduction, the limit in low intensity of Poisson–Voronoi tessellations in Rd

is trivial. This comes from the fact that, although the Gromov boundary of Rd is nontrivial (it is

homeomorphic to Sd−1), the polynomial growth of Rd imposes that the difference of distances to o

(the delays) of the first two closest points in a PPP with intensity λ tends to ∞ in probability as

λ→ 0. Indeed, it is easy to convince oneself that superpolynomial growth is required to get tight

delays as λ→ 0. The most natural choice of such a space is obviously the d-dimensional hyperbolic

space, Hd.

3.1 Background on hyperbolic spaces

For the hyperbolic space Hd with dimension d ≥ 2, we will use the model of the open unit ball

Bd = {x ∈ Rd ; |x| < 1} equipped with the metric 2|dx|/
(
1− |x|2

)
, which leads to the

distance (x, y) 7→ 2 arcsinh
|x− y|√

(1− |x|2)(1− |y|2)
and measure

( 2

1− |x|2
)d

1Bd · Leb,

and the model of the upper half-space Ud = Rd−1 × R>0 equipped with the metric |dx|/xd, where

x = (x1, x2, . . . , xd), which leads to the

distance (x, y) 7→ 2 arcsinh
|x− y|

2
√
xd yd

and measure
1

xdd
1xd>0 · Leb,

10



where Leb denotes the usual Lebesgue measure; see [Sto16, pp. 9, 11, 13, 14]. We will write

respectively dHd and VolHd for the hyperbolic distance and measure. The origin of Hd will be denoted

by o, meaning the center of the ball or (0, 0, . . . , 1) in Ud.
The isometries of Hd form the group Möbd of Möbius transformations of Hd. An isometric

mapping from Bd onto Ud is given by the generalized Cayley transform, which is the diffeomorphism

κ : Bd → Ud

κ(z) = x :=
1

z2
1 + · · ·+ z2

d−1 + (zd − 1)2

(
2z1, . . . , 2zd−1, 1− |z|2

)
,

κ−1(x) = z :=
1

x2
1 + · · ·+ x2

d−1 + (xd + 1)2

(
2x1, . . . , 2xd−1, |x|2 − 1

)
for z ∈ Bd and x ∈ Ud [Lee18, p. 66]. If rf denotes reflection in the plane xd = 0, then the

maps z 7→ κ
(
rf(z)

)
and x 7→ rf

(
κ−1(x)

)
are both restrictions of inversion in the sphere of radius√

2 centered at (0, 0, . . . ,−1) ∈ Rd; see [Sto16, Exercise 2.4.6(a)]. The maps κ and κ−1 extend

continuously to the boundaries where |z| = 1 and xd = 0 or x = ∞, yielding the stereographic

projection from the north pole onto the plane containing the equator, Ste : Sd−1 → Rd−1, and its

inverse.

Passing to the upper half-space model Ud, we find that the image of the uniform measure over

∂Bd onto ∂Ud = Rd−1 is given by:

Lemma 3.1. The image of the uniform measure on Sd−1 by the stereographic projection Ste : Sd−1 →
Rd−1 is the stereographic law given by

1

cd
(
1 + |x|2

)d−1
dx =

1

cd
(
1 +

∑d−1
i=1 x

2
i

)d−1
dx1 · · · dxd−1,

where cd is as in (1.2).

Proof. This can be proved by a tedious but elementary calculation or by the explicit expression of

the metric tensor on the sphere Sd−1 in stereographic coordinates in [Lee18, Equation 3.7]. A third

proof uses the hyperbolic Poisson kernels, since Ste is merely the extension to the boundaries of the

isometry κ. For such a proof, see [Sto16, Exercise 5.7.15].

3.2 The ideal tessellation Vd

Below we prove a slightly stronger version of Theorem 1.1.

Theorem 3.2. The Poisson–Voronoi tessellation of (X
(λ)
i ; i ≥ 1) converges in distribution as λ ↓ 0

towards the nondegenerate ideal Voronoi diagram Vor(Θ,D) where Θ = (Θ1, . . .) are i.i.d. uniform

angles over Sd−1 = ∂Bd and D = (Di ; i ≥ 1) is such that ( cd
d−1e(d−1)Di)i≥1 is a homogeneous Poisson

point process (PPP) on R+ of unit intensity. The process D is independent of Θ.

We call Vor(Θ,D) the ideal Poisson–Voronoi tessellation of Hd and denote it by Vd; we

still need to prove that it is a tessellation.

Proof. Let X(λ) = (X
(λ)
i ; i ≥ 1) be a PPP of intensity1 λd−1 · VolHd on the hyperbolic space

Hd, where as usual the points are ranked by increasing hyperbolic distance to the origin, o. In

1The normalization of the intensity as λd−1 is here to ensure that the closest point to o in X(λ) is roughly at

distance log(1/λ) as λ→ 0 for every d ≥ 2.
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particular, almost surely dHd(o, X
(λ)
i ) is strictly increasing in i ≥ 1. Our goal is to prove convergence

of the corresponding Voronoi tessellations towards a limiting ideal diagram as λ → 0. To apply

Theorem 2.3, one needs to check convergence of points towards the ideal boundary and convergence

of proto-delays. Both turn out to be very easy:

Convergence of proto-delays. By the mapping theorem for Poisson processes, it is simple to

see that as λ→ 0, we have

dHd(o, X
(λ)
1 )

|log λ|
(P)−−→
λ↓0

1,

and so it is natural to introduce the shifted distances, i.e., the proto-delays, as

D
(λ)
i := dHd(o, X

(λ)
i )− log(1/λ), i ≥ 1. (3.1)

The mapping theorem for Poisson processes readily entails that, as λ ↓ 0, the set of increasing

proto-delays (D
(λ)
i )i≥1 converges in law to the increasing points (Di)i≥1 of a Poisson point process

on R with intensity measure

cd e(d−1)s ds.

Equivalently, the set ( cd
d−1e(d−1)Di)i≥1 is a rate-1 homogeneous Poisson process on R+. These can be

proved via the following simple calculation. Recall that the volume growth function for hyperbolic

space is given by

fd(u) := VolHd
(
BHd(o, u)

)
= Ωd

∫ u

0
(sinh ρ)d−1 dρ,

where Ωd := 2 π
d/2

Γ( d
2

)
is the Euclidean volume of Sd−1. A straightforward calculation shows that for all

x, y ∈ R, we have

lim
λ↓0

λd−1

(
fd

(
x+ log

1

λ

)
− fd

(
y + log

1

λ

))
=

21−d

d− 1
Ωd

(
e(d−1)x − e(d−1)y

)
,

whence both claims follow from the mapping theorem for Poisson processes.

Convergence to ideal points. Let us return to the Poisson point process of nuclei (X
(λ)
i ; i ≥ 1)

and adopt the ball model Bd for hyperbolic space. By rotational symmetry, it is clear that

conditionally on the distance process
(
dHd(o, X

(λ)
i ) ; i ≥ 1

)
, or equivalently conditionally on the

proto-delays, the angles (Θ
(λ)
i ; i ≥ 1) of the points X

(λ)
i in the ball model Bd are i.i.d. uniform over

Sd−1. It is well known that the Gromov boundary of Bd is Sd−1, or equivalently that a divergent

sequence of points xi ∈ Bd with angles θi converges to θ ∈ ∂Bd = Sd−1 if and only if xi →∞ and

θi → θ (see [BH13, Example 8.11, page 265]).

We can now conclude the proof of the theorem. By the Skorokhod embedding theorem, we can

couple, on the same probability space, all the Poisson point processes (X
(λ)
i ; i ≥ 1) for λ > 0 in

such a way that for every i ≥ 1, the proto-delays and the angles converge almost surely: D
(λ)
i → Di

and Θ
(λ)
i → Θi. In particular, Di → ∞ almost surely and the convergence of angles implies the

convergence towards the Gromov boundary. Using the fact that all Θi and Di have continuous

distributions, it is an easy matter to check that the limiting ideal diagrams are a.s. nondegenerate.

We can then apply Theorem 2.3 to get the desired convergence.
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3.3 Computing the separations

Having identified the limiting tessellation, we now aim to look more closely into its properties. The

final piece needed to prove Theorems 1.2 and 1.3 is a concrete way of computing distances from

extended ideal points. For this, we will see that it is more practical to first perform a change of

variable and consider the exponential of the delays.

Recall the definition of an extended ideal point (θ, δ) ∈ ∂̂Hd = ∂Hd × R where θ is a boundary

point and δ ∈ R a delay. It will be convenient in the rest of the manuscript to consider the following

equivalent description after taking the exponential of the delays: Introduce ∂̃Hd := ∂Hd×R+, which

we call the corona , and consider the image of the extended ideal points

(θ, δ) ∈ ∂̂Hd 7→
(
θ,

cd
d− 1

e(d−1)δ
)
∈ ∂̃Hd.

We call the first coordinate of a point in the corona its angle and the second coordinate its radius .

We will also use the letter “r” for radii r, ri, R,Ri and the letter “δ” or “D” for delays. It follows

from the first part of the proof of Theorem 3.2 that (θi,
cd
d−1e

(d−1)Di)i≥1 is a Poisson point process in

the corona with intensity

µd := Unif ⊗ Leb; (3.2)

the points of this PPP will be called ideal nuclei . In these new coordinates where r = cd
d−1e(d−1)δ,

we introduce the (exponential) separation between z and a point (θ, r) in the corona in terms of

the linear separation between z and an ideal point (θ, δ) as follows:

d
(
z, (θ, r)

)
:=

cd
d− 1

exp
{

(d− 1)d
(
z, (θ, δ)

)}
. (3.3)

This monotone, strictly increasing transformation preserves the inequality in Definition 2.1 and hence

the associated ideal Voronoi tessellation. See Figure 3.1 for an example of the Poisson point process

on the corona and its associated Voronoi and Delaunay tessellations. Here, one associates to every

Voronoi vertex v the ideal simplex formed from the d+ 1 angles of the ideal nuclei whose separation

from v is smallest. The resulting collection of ideal simplices forms the Delaunay tessellation;

complete details are given in Section 3.5.

3.3.1 Separations to the ideal nuclei via the Poisson kernel

Remember that the ideal boundary of Bd is identified to the (d− 1)-dimensional sphere, Sd−1. In

this model, we recall the expression of the (hyperbolic) Poisson kernel that gives the density of

the harmonic measure on Sd−1 seen from a point z ∈ Bd: For z ∈ Bd and θ ∈ Sd−1, write

K(z, θ) :=
(1− |z|2

|z − θ|2
)d−1

;

see [Sto16, Definition 5.1.1]. For the upper half-space model, given z ∈ Ud and θ ∈ Rd−1, the kernel

is

K(z, θ) :=
1

cd

( zd
|z − θ|2

)d−1
;
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Figure 3.1: Portions of the ideal Voronoi Vd (in black) and Delaunay tessellations (in light blue,

where ideal nuclei are joined if the corresponding tiles are adjacent in Vd), with the corona showing

the first 500 ideal nuclei. The radii of the nuclei are scaled linearly to [1.02, 2.02] for graphical

reasons. Each point (θ, r) in the corona is joined by a line segment to θ in the ideal boundary.
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see [Sto16, (5.6.1)]. However, a slightly modified kernel is more useful to us in Ud:

K̂(z, θ) :=


(zd(1 + |θ|2

)
|z − θ|2

)d−1
if θ 6=∞,

(zd)
d−1 if θ =∞.

These kernels occur naturally when computing separations from ideal nuclei:

Lemma 3.3 (Separation in coordinates). The separation from z ∈ Hd to (θ, r) ∈ ∂̃Hd satisfies

d
(
z, (θ, r)

)
=


r

K(z, θ)
in the ball model,

r

K̂(z, θ)
in the upper half-space model.

Thus, if (θ1, r1), (θ2, r2) are two points of the corona, then a given point z ∈ Bd has a smaller

separation to (θ1, r1) than to (θ2, r2) iff

r1

K(z, θ1)
≤ r2

K(z, θ2)
iff r1|z − θ1|2(d−1) ≤ r2|z − θ2|2(d−1), (3.4)

whereas for z ∈ Ud, the condition is

r1

K̂(z, θ1)
≤ r2

K̂(z, θ2)
iff r1

( |z − θ1|2

1 + |θ1|2
)d−1

≤ r2

( |z − θ2|2

1 + |θ2|2
)d−1

, (3.5)

where the fraction is interpreted as 1 if θi =∞.

Proof. Since earcsinh t − e− arcsinh t = 2t, we have earcsinh t ∼ 2t as t → ∞. Therefore, if Bd 3 xn →
θ ∈ ∂Hd as n→∞, we have for all y ∈ Bd that

exp
{

dHd(xn, y)
}
∼ 4|θ − y|2(

1− |xn|2
)(

1− |y|2
) . (3.6)

Applying this to y = z and to y = o yields

edθ(z) =
|z − θ|2

1− |z|2
. (3.7)

Using the definitions of d
(
z, (θ, r)

)
and of K completes the proof.

The proof is almost the same in Ud: For Ud 3 xn → θ ∈ ∂Hd as n→∞, we have for all y ∈ Ud
that

exp
{

dHd(xn, y)
}
∼


|θ − y|2

xn,dyd
if θ 6=∞,

xn,d
yd

if θ =∞.
(3.8)

Here, when θ =∞, we may take the first d− 1 coordinates of xn to be fixed (not changing with n).

Applying this to y = z and to y = o = (0d−1, 1) yields

edθ(z) =


|z − θ|2

zd
(
1 + |θ|2

) if θ 6=∞,

1

zd
if θ =∞.

(3.9)

Using the definitions of d
(
z, (θ, r)

)
and of K̂ completes the proof.
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It may appear incongruous that K̂ rather than K appears in the upper half-space model. The

reason is that the radius r is based on the origin, o, which is not as natural a reference point for U
as it is for B. A more natural reference point for U is the ideal point, ∞. One can, in fact, couple

the PPPs of intensity λ > 0 of nuclei in U by dilating from ∞: see Lemma 3.6 below to see how a

more natural expression ensues.

The following corollary will be useful for the proof of Theorem 1.4.

Corollary 3.4. Consider two ideal nuclei, (θ1, r1) and (θ, r). In the upper half-space model Ud, if

θ1 =∞, then the (d− 1)-hyperplane of points at equal separation from the two ideal nuclei is the

Euclidean hemisphere centered at θ with radius

√
1 + |θ|2

(r1

r

) 1
2(d−1)

.

Proof. This is immediate from (3.5).

3.3.2 Almost sure limit via dilations

The convergence in the above theorem is a convergence in law, but actually there are explicit ways

to realize the coupling towards the end of the proof for different λ via dilation as follows:

Remark 3.5 (Dilations from o in Bd). Let (Θ,R) =
(
(Θi, Ri) ; i ≥ 1

)
be a Poisson point process

on Sd−1×R+ with intensity Unif ⊗Leb. Let vd(r) be the hyperbolic volume of the ball of Euclidean

radius r centered at the origin in the ball model of Hd. For λ > 0, define the point process X̃(λ) as

Angle(X̃
(λ)
i ) := Θi and dEuc(0, X̃

(λ)
i ) := v−1

d

(
vd(Ri)/λ

d−1
)
.

Then it is straightforward to check that for each λ > 0, the point process X̃(λ) is Poisson with

intensity λd−1 and for which we have the almost sure convergence X̃(λ) → (Θ,D), where R =
cd
d−1 exp{(d− 1)D}. In particular, by the proof of Theorem 3.2, its Voronoi tessellation converges

almost surely towards Vd; see Figure 3.2.

Figure 3.2: Left to right: Poisson–Voronoi tessellations of the hyperbolic plane (in the unit disk

model) with decreasing intensity coupled via dilations from o using 1000 nuclei. Their limit (on the

right with 10,000 ideal nuclei) is V2, the ideal Poisson–Voronoi tessellation of the hyperbolic plane.
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Lemma 3.6 (Dilations in Ud). Let X be a Poisson point process with intensity 1 in Hd. In the

upper half-space model, the intensity measure, dVolHd , is dx1 dx2 · · · dxd−1 x
−d
d dxd. Define X(λ) by

mapping (x1, . . . , xd) 7→ (x1, . . . , xd−1, λxd), which we write as x 7→ x(λ). Then X(λ) is a PPP of

intensity λd−1. As λ ↓ 0, the Voronoi tessellation associated to X(λ) a.s. converges to the diagram

given by (1.1).

Proof. The Poisson mapping theorem gives that X(λ) is a PPP of intensity λd−1. By (3.8), for each

x ∈ X and all z ∈ Ud, we have

exp
{

dHd(x
(λ), z)

}
∼ |θ − z|

2

λxdzd
,

where θ := (x1, . . . , xd−1), showing that the proto-delays converge a.s. Write p(x) :=
(
θ, 1

(d−1)x
1−d
d

)
.

Since X(λ) converges to Vd by Theorem 3.2, it remains to show that
{
p(x) ; x ∈ X

}
is a Poisson

process of intensity Leb⊗ Leb. This follows from the Poisson mapping theorem.

We can now conclude the proof of Theorem 1.2:

Proof of Theorem 1.2. Knowing that the limit Vd exists and described by Theorem 3.2, the proof

follows by appeal to (3.4) in the case of the ball model. The description in the case of the upper

half-space model follows from Lemma 3.6.

3.4 First properties of Vd

Let us establish the first few properties of Vd and Theorem 1.3. The faces of the ideal Voronoi cells

are totally geodesic. This follows from the equivalent fact for the Poisson–Voronoi tessellations with

positive intensity.

3.4.1 Topological properties

Our ideal Voronoi diagrams share the same a.s. local properties as standard Poisson–Voronoi

tessellations in dimension d:

Proposition 3.7. Almost surely, the diagram Vd is a locally finite, face-to-face, and normal

tessellation.

Proof. The argument is almost the same as for standard Poisson–Voronoi tessellations: Given a

fixed ball in Bd, the inequality (3.4) combined with the fact that the ideal radii tend to infinity a.s.

shows that there are only finitely many ideal nuclei that could have smaller separation from any

point in that ball than the separation from the ideal nucleus with smallest radius. Therefore, only

finitely many ideal Voronoi cells intersect that ball. Since the cells are convex, so is each intersection

with the ball, as well as all finite intersections among the cells. As a consequence, the diagram has

only finitely many faces in the ball, i.e., is locally finite. It then follows from Theorem 3.2 that Vd is

a.s. a tessellation.

We next prove that Vd is face-to-face. If not, then there exist two ideal nuclei, X and Y , whose

cells, C(X) and C(Y ) respectively, intersect in a nonempty set S that is not a face of C(X). That

means a.s. there is some w ∈ C(X) \ S that lies in the geodesic hyperplane spanned by S, in other
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words, d(w,X) = d(w, Y ). Since w /∈ C(Y ), there is some ideal nucleus Z with d(w,Z) < d(w, Y ).

However, d(w,X) ≤ d(w,Z), and these two inequalities contradict d(w,X) = d(w, Y ).

To show normality, we first claim that a.s., at most d+ 1 tiles can share a common point. Given

d+ 1 ideal nuclei, (3.4) implies that there is a.s. at most one point in Hd at equal separation from

these ideal nuclei. If we label the ideal nuclei in order of increasing radius as X1, X2, . . ., it follows

that for each (d+ 2)-tuple 1 ≤ k1 < k2 < · · · < kd+2, the probability is 0 that Xk1 , . . . , Xkd+1
, Xn+1

have the same separation from any point in Hd. Therefore, a.s., no set of d + 2 ideal nuclei is at

equal separation from any point in Hd, which proves our claim.

Next, for points x1, x2, . . . , xm in the corona, write S(x1, . . . , xm) for the set of points at equal

separation from xi with 1 ≤ i ≤ m. An argument very similar to the preceding one shows more

generally that a.s., the ideal nuclei are in general separation position, meaning that if Y1, Y2, . . . , Ym

are distinct ideal nuclei with m ≤ d+ 1, then there is no additional ideal nucleus Ym+1 such that

∅ 6= S(Y1, . . . , Ym) = S(Y1, . . . , Ym, Ym+1). Therefore, the totally geodesic plane S(Y1, . . . , Ym) has

dimension d−m+ 1 or is empty.

Finally, suppose that S is a k-face of Vd with 0 ≤ k ≤ d− 1. Because Vd is face-to-face a.s., there

exist distinct ideal nuclei Y1, Y2, . . . , Ym the intersection of whose cells is S. By what we proved in

the paragraph before the last one, m ≤ d+ 1. Thus, S affinely spans S(Y1, . . . , Ym) and so by the

previous paragraph, d−m+ 1 = k.

In fact, we have quantitative control over the number of faces that appear in a given ball:

Proposition 3.8 (Tail bounds for crowding). Let Bu = Bu(o) be the ball centered at o with

hyperbolic radius u. Write α := 1/(2e2(d−1)u − 1). The probability that the number of k-faces of Vd
that intersect Bu is at least n is at most 2(1− α)n

1/(d+1−k)−1 < 2e−α(n1/(d+1−k)−1) for 0 ≤ k ≤ d and

n ≥ 0.

Proof. If z is a point of Bu that belongs to the cell of an ideal nucleus (θ, r) 6= (Θ1, R1), then the

separation of z from (θ, r) is at most that from (Θ1, R1), whence

R
1/2(d−1)
1 (1 + a) ≥ R1/2(d−1)

1 |z −Θ1| ≥ r1/2(d−1)|z − θ| ≥ r1/2(d−1)(1− a),

where a := tanh(u/2) is the Euclidean radius of Bu. That is, r ≤ R1

[
(1 + a)/(1− a)

]2(d−1)
= R1ev,

where v := 2(d− 1)u. Hence, the number N of ideal nuclei with radius in (R1, R1ev] is at least

the number of cells—other than the cell of o—that intersect Bu. Now, given R1, the conditional

distribution of N is Poisson with parameter R1(ev − 1). Thus,

E
[
etN
]

= E
[
eR1(ev−1)(et−1)

]
=

1

1− (ev − 1)(et − 1)

when (ev − 1)(et − 1) < 1. Choosing t so that this product is 1/2 yields the bound

P[N ≥ n] = P[etN ≥ etn] ≤ 2(1− α)n < 2e−αn

by Markov’s inequality.

By normality, each k-face is the intersection of d+ 1− k cells. If such a face intersects Bu, then

so does each of the cells whose intersection forms that face. If the number of cells intersecting Bu is

m, then there are at most ms intersections of s of them. Therefore, if at least n k-faces intersect
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Bu, then at least n1/(d+1−k) cells intersect Bu, and so N ≥ n1/(d+1−k) − 1. This gives the result

desired.

We now prove that each cell has a unique end. In fact, we give a quantitative bound on how far

the cell of the origin can extend away from the ideal nucleus (Θ1, R1) in the opposite direction with

a spherical cap of angle α ∈ (0, 2π) subtended at o:

Proposition 3.9 (Tail bound for one end). Let u > 0, α ∈ (0, 2π), γ :=
(
(eu−1) cos(α/4)

)2(d−1)

and β := (γ− 1)+. Let A be the portion of the unit sphere intersected by the cone C of opening angle

α ∈ (0, 2π) subtended at o in the antipodal direction to Θ1. Write α′ for the (d− 1)-volume of A.

The chance that the zero cell contains some z at hyperbolic distance u from o and within the cone C

is at most 1/(1 + α′β). Therefore, all cells have only one end a.s.

Proof. Let S be the intersection of the sphere about o of hyperbolic radius u with the cone C. For

z ∈ S, we have R1|z −Θ1|2(d−1) ≥ R1

(
2a cos(α/4)

)2(d−1)
, where a := tanh(u/2) is the Euclidean

radius of the sphere. Note that the closest point z ∈ S to θ ∈ A has Euclidean distance 1− a from θ.

Therefore, if there is some z ∈ S ∩ Cd, then for all i with Θi ∈ A, we have by (3.4) and the preceding

inequality that

R1

(
2a cos(α/4)

)2(d−1) ≤ Ri(1− a)2(d−1).

The radii of the PPP on the corona restricted to ideal nuclei with angles in A has intensity α′, so

the chance, given R1, that the above inequality holds for all i with Θi ∈ A is exp
{
−α′R1β

}
because

2a/(1− a) = eu − 1. The unconditional probability that this inequality holds is therefore the bound

claimed.

Since this bound tends to 0 as u→∞, it follows that Cd a.s. contains no limit point in A. Since

α can be chosen as close to 2π as we wish, we conclude that Cd has only the end Θ1. There are only

countably many cells, whence the same holds for all cells.

3.4.2 Möbius action on the corona via the Poisson kernel

In (2.3), we extended isometries to the extended boundary in a way that preserves separations.

Converting coordinates to the corona and using (3.7), we find that an isometry φ : Bd → Bd of

hyperbolic space acts on the corona preserving separation via

φ(θ, r) :=
(
φ(θ), r/K

(
φ−1(o), θ

))
. (3.10)

Lemma 3.10. The action of the Möbius group Möbd on the corona ∂̃Bd defined by (3.10) is a

transitive group action that leaves the measure µd of (3.2) invariant. In particular, the law of Vd is

invariant under isometries.

Proof. This can be checked directly on the corona using the equivariance of harmonic measure (i.e.,

φ∗
(
K(z, ·)Unif

)
= K

(
φ(z), ·

)
Unif), but let us prove it using PPPs: Let X(λ) be a PPP on Bd with

intensity λ. Let R(λ) be the corresponding proto-delays, exponentiated as in the coordinates of the

corona. It follows from Theorem 3.2 that (X(λ),R(λ)) converges as λ→ 0 towards a PPP on the

corona with intensity µd. On the other hand, the law of (X(λ),R(λ)) is invariant under isometries.

It follows that Möbd acts in a way that leaves the measure µd of (3.2) invariant. It is easy to check

that this action is indeed transitive.
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The measure µd is therefore the Haar measure on ∂̃Hd for the action of Möbd. Also, the subgroup

of Möbd that stabilizes (θ, r) is the subgroup that fixes the horosphere at θ that passes through the

origin (no matter the value of r).

Proof of Theorem 1.3. By Proposition 3.9, the cells are unbounded with one end a.s. Since the ends

are distinct, it follows that all lower-dimensional faces are bounded a.s. The remaining properties

were proved in Proposition 3.7 and Lemma 3.10.

The separation field , whose value at z is the minimum separation between z and all ideal

nuclei, determines the ideal Voronoi and Delaunay tessellations. See Figure 3.3 for a sample. A

measurable map that intertwines two actions of a given group Γ is called Γ-equivariant. When

the actions preserve probability measures, the second action is then called a Γ-equivariant factor

of the first. When the map is invertible with measurable inverse, then the two actions are called

Γ-equivariantly isomorphic.

0.1

1.5

2.9

4.3

5.7

7.1

8.5

9.9

Figure 3.3: Part of the separation field in H2. The boundaries of the cells of the ideal Voronoi

tessellation are formed by the singular points of the field (where it is not differentiable).

Our next result uses Proposition 3.9, which proved the first bullet point of Theorem 1.3.

Theorem 3.11 (Isomorphisms and factors). The Poisson point process of ideal nuclei on the

corona, the separation field, and the IPVT are all Möbd-equivariantly isomorphic.

Proof. It suffices to define measurable, equivariant maps fNS, fSV, and fVN from the ideal nuclei

to the separation field, from the separation field to the Voronoi tessellation, and from the Voronoi

tessellation to the ideal nuclei, respectively, such that fVN ◦ fSV ◦ fNS is the identity a.s. In fact, we

need not prove that fVN is equivariant, because the composition being the identity forces it to be so.
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For a simple counting measure N on ∂̃Hd with radii tending to infinity, let fNS(N) be the

separation field of N , i.e., fNS(N)(z) := min{r/K(z, θ) ; N(θ, r) = 1}. Because Möbd preserves

separations (2.4), fNS

(
φ∗(N)

)
(z) = fNS(N)

(
φ−1(z)

)
for all φ ∈ Möbd and z ∈ Hd, i.e., fNS

(
φ∗(N)

)
=

φ
(
fNS(N)

)
, which is equivariance. This shows that the separation field is a factor of the ideal nuclei

via fNS.

The next step is trivial: Definition 2.1 defines the map fSV, which (2.4) shows is equivariant.

Finally, consider Vd. Each cell has one end a.s. by Proposition 3.9, and that end is the angle of

its ideal nucleus, so defining the set of angles of fVN(Vd) is easy. Furthermore, we know the angle θ1

of the ideal nucleus of the cell of the origin. By Lemma 3.3, we have that for z on the boundary of

two neighboring cells with ideal nuclei (θ, r) and (θ′, r′),

r

r′
=
K(z, θ)

K(z, θ′)
.

It follows that Vd determines all such quotients and thus the set {ri/r1 ; i ≥ 1} (we may index ri in

increasing order). We determine r1 by 1/r1 = limi→∞
ri/r1
i a.s. This defines fVN and shows that the

composition of all three maps is the identity a.s.

Because every factor of an ergodic process is itself ergodic, it follows that the IPVT is ergodic.

3.5 Delaunay tessellations

Intimately tied with Voronoi tessellations are their dual, Delaunay tessellations. Given a locally

finite set X of nuclei in Hd whose convex hull is all of Hd, let V be the corresponding Voronoi

tessellation. For each vertex v of a cell in V , the dual Delaunay cell is defined as the convex hull of

those nuclei whose Voronoi cell contains v. Note that the nuclei just mentioned lie on the boundary

of a ball whose interior is disjoint from X. The collection of all Delaunay cells defines the Delaunay

tessellation . This is a face-to-face tessellation: a slight modification of the words in the proof of

[SW08, Theorem 10.2.6] for the Euclidean case works in our case. When V is a normal tessellation,

all Delaunay cells are simplices of dimension d and so all their faces are simplices as well.

If V is an ideal Voronoi tessellation, we similarly define dual ideal Delaunay cells. These are ideal

simplices with d+ 1 ideal angles for vertices when V is normal. We now show that when V = Vd,
the dual ideal Delaunay cells a.s. form a face-to-face simplicial tessellation, which we call the ideal

Poisson–Delaunay tessellation (IPDT) and denote by Dd. We also show that Dd is the limit of

the Delaunay tessellations D(λ)
d formed by PPPs of intensity λ > 0 in Hd: see Figure 3.4.

Proposition 3.12 (Dilations for Delaunay). Adopt the notation of Remark 3.5. Let D(λ)
d be

the Delaunay tessellation corresponding to X̃(λ) and Dd be the Delaunay cells associated to Vd. Then

as λ→ 0, a.s. D(λ)
d converges to Dd in the sense that each cell of Dd is a limit in the Fell topology

of cells of D(λ)
d .

The same holds for the dilations in the upper half-space model, Lemma 3.6.

Proof. By Remark 3.5, a.s. each ideal Voronoi vertex, v, is a limit of Voronoi vertices v(λ) of V(λ)
d .

Now v a.s. has exactly d+ 1 ideal nuclei at smallest separation, s, by Proposition 3.7, and the other

ideal nuclei have separations from v that do not cluster at s. Therefore, when λ is sufficiently small,
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Figure 3.4: Left to right: Poisson–Delaunay tessellations of the hyperbolic plane (in the unit disk

model) with decreasing intensity coupled via dilations using 1000 nuclei. Their limit (on the right)

is D2, the ideal Poisson–Delaunay tessellation of the hyperbolic plane.

v(λ) also have closest nuclei that approach these d+ 1 ideal nuclei, which means that the Delaunay

simplices corresponding to v(λ) also converge to the ideal Delaunay simplex corresponding to v.

Hence, D(λ)
d a.s. converges to Dd.

We will use the results and observations of Section 5 for this next result, but the reasoning will

not be circular.

Proposition 3.13 (Basic properties of the IPDT). The ideal Poisson–Delaunay tessellation,

Dd, is a.s. a face-to-face tessellation.

Proof. Since each ideal Delaunay cell is an ideal simplex, it has nonempty interior. In Section 5, we

consider the zero cell in the upper half-space model with its ideal nucleus at ∞. In Section 5.3.2, we

explain how the zero cell is closely related to the Laguerre diagrams studied in [GKT22b] for certain

choices of parameters there. In particular, a.s. each set of d ideal nuclei in Rd−1 that form an ideal

Delaunay simplex when joined with the ideal nucleus at ∞ gives a Euclidean simplex in Rd−1 that

is one of the so-called β′-Delaunay simplices, and conversely. These β′-Delaunay simplices tessellate

Rd−1 [GKT22b, p. 1263]. It follows that the set of ideal Delaunay simplices containing ∞ is locally

finite a.s. and covers a neighborhood of ∞, whence each ideal Delaunay simplex containing ∞ has

the property that each of its (d− 1)-faces containing ∞ is a face of another such Delaunay simplex.

The same then holds a.s. for every ideal nucleus, whence Dd is locally finite and covers Hd a.s.

There is an equivariant, measurable bijection between the k-faces of Vd and the (d+ 1− k)-faces

of Dd (and similarly for the positive-intensity tessellations), known as duality: the k-face of Vd
given by the intersection of the cells corresponding to ideal nuclei Y1, . . . , Yd+1−k is mapped to the

(d+ 1− k)-face of Dd given by the convex hull of Y1, . . . , Yd+1−k.

Remark 3.14. It follows from Theorem 3.11 that the ideal Delaunay tessellation is a Möbd-factor of

the point process of ideal nuclei.
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4 Face intensities

Since Vd is invariant under isometries of Hd, we can define the intensities of various geometric

quantities such as k-faces. Using existing results in stochastic geometry, those quantities can be

explicitly computed for the ideal Poisson–Voronoi tessellations. Let us first recall the classical

construction of the Palm distribution for general stationary point processes.

4.1 Palm measures and typical points

4.1.1 Euclidean space

Let X be a point process, or, more generally, a random measure on Rd whose law is invariant

under translations. Then A 7→ E
[
X(A)

]
is a translation-invariant map on Borel subsets of Rd,

whence is a multiple of Lebesgue measure; that constant multiplier is called the intensity IX

of X. Define µ(B) := E
∫
Rd 1B(x,X − x) dX(x) for B in the product σ-field generated by Borel

sets in Rd and the evaluation functionals on Borel sets. Because the law of X is invariant, µ is

invariant under translations in the first coordinate, that is, µ(B1×B2) = µ
(
(B1−x)×B2

)
for Borel

B1 ⊆ Rd, measurable B2, and x ∈ Rd. Hence, if IX is positive and finite, then µ = IX · Leb ⊗ Po

for a unique probability measure Po on measures on Rd [SW08, Theorem 3.3.1]. For example,

Po(B2) = I−1
X · E

∫
x∈B1

1B2(X− x) dX(x) for every B1 with Leb(B1) = 1. The measure Po is called

the Palm distribution of X. When X is a point process, Po has one of its points at o a.s., o

then being referred to as a typical point of X. When X is a PPP, Slivnyak’s theorem [SW08,

Theorem 3.3.5] shows that the Po-law of X equals the P-law of X + δo. Let Eo denote integration

with respect to Po. The definition of µ tells us that to integrate a nonnegative, measurable function

f with respect to µ, we merely replace the indicator 1B by f , which is the content of the refined

Campbell theorem : IX · Eo
∫
Rd f(x,X) dx = E

∫
Rd f(x,X− x) dX(x) [SW08, Theorem 3.3.3].

4.1.2 Hyperbolic space

Similar definitions hold for a random measure on a group whose law is invariant under translations.

In the case of a random measure X on a homogeneous space like Hd, a slightly more complicated

definition of Palm measure is needed [Las10]. Assume that the law of X is invariant under Möbd.

Then A 7→ E
[
X(A)

]
is an isometry-invariant map on Borel subsets of Hd, whence is a multiple of

VolHd ; that multiplier is called the intensity IX of X. Let κ be the probability Haar measure on

the isotropy (stabilizer) subgroup Möbod of o. Choose maps x 7→ φx from Hd → Möbd such that

φx(o) = x. Write Möbxd := {φ ∈ Möbd ; φ(o) = x} and κx := κ ◦ φ−1
x ; the measure κx does not

depend on the choice of φx. Define µ(B) := E
∫
Hd

∫
Möbxd

1B(x,X ◦ φ) dκx(φ) dX(x) for B in the

product σ-field generated by Borel sets in Hd and the evaluation functionals on Borel sets. If IX

is positive and finite, then µ = IX · VolHd ⊗ Po for a unique probability measure Po on measures

on Hd. The measure Po is called the Palm distribution of X. When X is a point process, Po

has one of its points at o a.s., o then being referred to as a typical point of X. The refined

Campbell theorem says that IX · Eo
∫
Hd f(x,X) dVolHd(x) = E

∫
Hd

∫
Möbxd

f(x,X ◦ φ) dκx(φ) dX(x)

for nonnegative, measurable functions, f . When X is a PPP, we again have a Slivnyak-type theorem:

the Po-law of X equals the P-law of X+ δo. This is proved as follows. Let X be a PPP with intensity

23



λ. By Mecke’s theorem [SW08, Theorem 3.2.5], we have that for all nonnegative, measurable g,

E
∫
Hd
g(x,X) dX(x) = λ

∫
Hd

E
[
g(x,X + δx)

]
dVolHd(x). (4.1)

Choose B1 ⊂ Hd with VolHd(B1) = 1 and a Borel set B2 of measures on Hd. Consider

g(x,X) :=

∫
Möbxd

1B1(x)1B2(X ◦ φ) dκx(φ).

By the refined Campbell theorem,

E
∫
Hd
g(x,X) dX(x) = λEo

∫
Hd

1B1(x)1B2(X) dVolHd(x) = λPo[X ∈ B2]. (4.2)

On the other hand, because (X + δx) ◦ φ = X ◦ φ+ δo for all φ ∈ Möbxd,

λ

∫
Hd

E
[
g(x,X + δx)

]
dVolHd(x) = λ

∫
Hd

∫
Möbxd

1B1(x)E1B2(X ◦ φ+ δo) dκx(φ) dVolHd(x)

= λ

∫
Hd

∫
Möbxd

1B1(x)E1B2(X + δo) dκx(φ) dVolHd(x),

= λP[X + δo ∈ B2], (4.3)

where, in the second step, we used the Möbd-invariance of the P-law of X. Comparing (4.1), (4.2),

and (4.3) proves our claim.

4.1.3 Marked random measures

We will be especially interested in the Palm distribution for marked random measures, with marks

being polytopes. Let E be either Rd or Hd. Although we can use any measurable space for the

space of marks [Las10, Remark 3.9], we will use the metrizable space M , which is the set of closed

subsets of E with the Fell topology. A marked random measure X on E with marks in M is a

random measure on E ×M that projects to a random measure on E. We say that the law of X is

invariant if it is invariant by the group of translations or isometries in the first coordinate, that is, if

P[X ∈ A × B] does not change under the group action on A for each fixed B, where A ⊆ E and

B ⊆ M are Borel. In this case, the preceding paragraphs with virtually no modification give the

Palm distribution of X, which, when the projection of X to E is a point process, is concentrated on

points of the form (o,m), and the refined Campbell theorem. In this case, we also call the (random)

mark m of o a typical mark .

4.1.4 Tessellations

Let us apply this to our setting. Recall that we denote by V(λ)
d the Poisson–Voronoi tessellation

on Hd with positive intensity λ > 0 and by Vd our limiting ideal Poisson–Voronoi tessellation. For

0 ≤ k ≤ d−1 fixed, to each k-dimensional face s of Vd or of V(λ)
d (we speak of vertices when k = 0 and

edges when k = 1), we associate a point Cen(s) ∈ s, called the center , in an isometry-equivariant,

measurable way (i.e., Cen
(
φ(s)

)
= φ

(
Cen(s)

)
for every isometry, φ). It will be convenient to assume

that Cen(s) lies in the relative interior of s, which implies that Cen is injective on the set of k-faces.

24



Thus, the centers of the k-faces of a Poisson–Voronoi tessellation allow us to define the invariant

marked random measure A 7→
∑

s∈k-faces

∫
Möb

Cen(s)
d

1A
(
Cen(s), φ−1(s)

)
dκCen(s) for Borel A ⊆ E×M ,

where κx is as above [Her21, Section 5.4]. A typical mark is now called a typical k-face . This

applies to k = d as well when λ > 0, since the cells have finite volume, making it possible to define a

center; in this case, we refer to a typical cell . When k = 0, we speak of a typical vertex. In this

case, the origin may be thought of as conditioned to be a Voronoi vertex.

Similar considerations apply for the faces of the (possibly ideal) Delaunay tessellations D(λ)
d or

Dd and for the Delaunay simplices themselves. Here, it may be necessary to use (generalized)

centers of the k-simplices, where we no longer require that the generalized center of a k-simplex lie

in that simplex or we use extra randomness. In our case, we may use the randomness of the PPP of

(ideal) nuclei. In fact, for the generalized center of a Delaunay k-simplex, we will use the center of

the corresponding (d+ 1− k)-face of the Voronoi tessellation. Here, 1 ≤ k ≤ d+ 1, although in the

case of positive-intensity nuclei, rather than ideal nuclei, we may allow k = 0. The only ones we will

use for the ideal Delaunay tessellation are the generalized centers of the ideal Delaunay simplices,

which are, then, the corresponding Voronoi vertices.

4.2 Intensities and ergodic properties

Let Vd,k denote the collection of k-faces of cells of Vd; in particular, Vd,d = Vd. For a k-face s ∈ Vd,k,

write νs for the k-dimensional hyperbolic measure on s. Consider the random measures

µd,k :=
∑

s∈Vd,k

δCen(s) and µ̃d,k :=
∑

s∈Vd,k

νs.

Of course, µd,0 = µ̃d,0. Since Vd is isometry invariant in law (Lemma 3.10), so are µd,k and µ̃d,k,

whence the mean measures (their expectations) are multiples of the hyperbolic measure on Hd. We

thus set

E[µd,k] = Id,k ·VolHd and E[µ̃d,k] = Ĩd,k ·VolHd . (4.4)

We call the constant Id,k ∈ [0,∞] (resp., Ĩd,k), the counting k-face intensity (resp., integral

k-face intensity) of Vd. The latter intensity is called by [SW08, p. 141] the k-volume density

or specific k-volume .

The counting intensities do not depend on the choice of center function. To see this, let Cen and

Cen′ be two center functions. Denote by µd,k and µ′d,k the corresponding random measures. Define

the measure

µ̂d,k :=
∑

s∈Vd,k

δCen(s) ⊗ δCen′(s)

on Hd ×Hd. For Borel A ⊆ Hd, we have

µ̂d,k(A×Hd) = µd,k(A) and µ̂d,k(Hd ×A) = µ′d,k(A).

The measure µ̂d,k is equivariant under the diagonal action of Möbd and the law of Vd,k is invariant

under the action of Möbd, whence the mean measure E[µ̂d,k] is invariant under the diagonal action

of Möbd. By unimodularity of Möbd, the mass-transport principle [LP16, Theorem 8.47] yields

E
[
µ̂d,k(A×Hd)

]
= E

[
µ̂d,k(Hd ×A)

]
.
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This gives our claim.

These intensities can naturally be defined for the Poisson–Voronoi tessellation V(λ)
d with positive

intensity λ > 0, which we denote by I
(λ)
d,k and Ĩ

(λ)
d,k for 0 ≤ k ≤ d. By choosing the center of a cell to

be its nucleus, we obtain I
(λ)
d,d = λ. The definition gives Ĩ

(λ)
d,d = 1. Similar intensities can be defined

for the (ideal) Poisson–Delaunay tessellation.

As one would expect, the intensities for λ > 0 converge to the corresponding intensities of the

ideal tessellation as λ→ 0:

Lemma 4.1 (Convergence of k-face intensities). For 0 ≤ k ≤ d− 1, we have

I
(λ)
d,k −−−→λ→0

Id,k ∈ (0,∞) and Ĩ
(λ)
d,k −−−→λ→0

Ĩd,k ∈ (0,∞).

Proof. Let Bu = Bu(o) be the ball of hyperbolic radius u ≥ 0 around the origin in Hd, so that

Id,k =
E[µd,k(Bu)]

VolHd(Bu)
(4.5)

for u > 0, with a similar formula for positive intensities λ > 0. Since V(λ)
d → Vd by Theorem 1.1, we

have, with obvious notation, that µ
(λ)
d,k(Bu)→ µd,k(Bu) in distribution as λ→ 0. By (4.5), it thus

suffices to prove that (µ
(λ)
d,k(Bu) ; 0 < λ < 1) is uniformly integrable to deduce convergence of the

expectations from the convergence in law. Define N
(λ)
d,k (Bu) to be the number of k-faces of Vd that

intersect Bu. Adapting Proposition 3.8 for positive intensity λ > 0, we obtain again a (uniform

in λ ∈ (0, 1)) stretched exponential bound on the tail probabilities of N
(λ)
d,k (Bu), which yields the

desired uniform integrability because µ
(λ)
d,k(Bu) ≤ N (λ)

d,k (Bu).

Since µ̃
(λ)
d,k(Bu) ≤ VolHk(B

(k)
u ) ·N (λ)

d,k (Bu), where B
(k)
u is a ball of radius u in Hk, a similar proof

holds for the convergence of Ĩ
(λ)
d,k.

These face intensities are directly related to aspects of typical faces and cells as shown in the

following two propositions.

Proposition 4.2 (Intensities and typical volumes). For 0 ≤ k ≤ d− 1, the quotient Ĩd,k/Id,k

equals the expected k-volume of the typical k-face of Vd. For λ > 0 and 0 ≤ k ≤ d, the quotient

Ĩ
(λ)
d,k/I

(λ)
d,k equals the expected k-volume of the typical k-face of V(λ)

d .

Proof. Define the measure

µ̂d,k :=
∑

s∈Vd,k

δCen(s) ⊗ νs

on Hd ×Hd. Write ‖νs‖ for the total k-volume of s. For Borel A ⊆ Hd, we have

µ̂d,k(Hd ×A) = µ̃d,k(A) and µ̂d,k(A×Hd) =
∑

s∈Vd,k,
Cen(s)∈A

‖νs‖.

The mean measure E[µ̂d,k] is invariant under the diagonal action of Möbd, whence the mass-transport

principle yields

E
[
µ̂d,k(Hd ×A)

]
= E

[
µ̂d,k(A×Hd)

]
. (4.6)
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The left-hand side equals Ĩd,k ·VolHd(A), while the right-hand side equals E
[∑

s∈Vd,k,
Cen(s)∈A

‖νs‖
]
. Let

Xd,k denote the marked random measure corresponding to Vd,k that was described in Section 4.1.4.

Using the function

f
(
Cen(s),Xd,k

)
:=

1A
(
Cen(s)

)
‖νt‖ if t is the unique k-face with Cen(t) = o

0 otherwise

in the refined Campbell theorem, we obtain that E
[∑

s∈Vd,k,
Cen(s)∈A

‖νs‖
]

equals the expected k-volume

of the typical k-face times Id,k ·VolHd(A). Hence (4.6) gives our claim.

A similar proof gives the result for positive λ.

Proposition 4.3 (Typical face vectors and volumes). For λ > 0 and 0 ≤ k ≤ d − 1, the

mean number (resp., k-volume) of k-faces of the typical cell of V(λ)
d is (d + 1 − k)I

(λ)
d,k/λ (resp.,

(d+ 1− k)̃I
(λ)
d,k/λ).

Proof. Let fk(t) be the number of k-faces of a cell, t. Define the measure

µ̂
(λ)
d,k :=

∑
s∈V(λ)

d,k , t∈V
(λ)
d

1s⊂t · δCen(s) ⊗ δCen(t)

on Hd ×Hd. For Borel A ⊆ Hd, we have

µ̂
(λ)
d,k(A×Hd) = (d+ 1− k)µ

(λ)
d,k(A) a.s. and µ̂

(λ)
d,k(Hd ×A) =

∑
t∈V(λ)

d ,
Cen(t)∈A

fk(t).

The mean measure E[µ̂
(λ)
d,k ] is invariant under the diagonal action of Möbd, whence the mass-transport

principle yields

E
[
µ̂

(λ)
d,k(A×Hd)

]
= E

[
µ̂

(λ)
d,k(Hd ×A)

]
.

The left-hand side equals (d+ 1− k)I
(λ)
d,k ·VolHd(A), while the right-hand side equals, by the refined

Campbell theorem, the expected number of k-faces of the typical cell times I
(λ)
d,d ·VolHd(A). Hence

the displayed equality gives our claim. The proof is similar for the mean k-volume.

We now give the distribution of the separation of the typical vertex from its closest ideal nucleus.

Surprisingly, it equals the distribution of Rd+1.

Proposition 4.4 (Typical separation). The separation of a typical vertex of Vd to its corre-

sponding d+ 1 ideal nuclei follows a Gamma(d+ 1) distribution.

Proof. For a Voronoi vertex v of the ideal tessellation Vd, let s(v) denote the least separation

from any ideal nucleus, as defined in (3.3). Let Etyp denote expectation with respect to the Palm

distribution of Vd for vertices. We have that for every pair of compactly supported, continuous

functions f1, f2 : R+ → R with
∫
f1

(
dHd(v,o)

)
dVolHd(v) = 1,

Etyp
[
f2

(
s(o)

)]
= I−1

d,0 · E
[ ∑
v∈Vd,0

f1

(
dHd(v,o)

)
f2

(
s(v)

)]
. (4.7)

27



Consider the Poisson–Voronoi tessellation associated to a Poisson point process X(λ) with intensity

λd−1. For a (d+1)-tuple ~η = (η1, . . . , ηd+1) ∈ Hd+1
d , we denote by B(~η) an open ball whose boundary

contains the points η1, . . . , ηd+1, by O(~η) the ball’s center, and by R(~η) its radius—unless no such

ball exists. Let B ⊂ Hd+1
d denote the set where such a circumscribed ball does exist and is unique.

Consider the coupling of X(λ) as in Remark 3.5. As remarked there, we have convergence of Voronoi

vertices towards the ideal Voronoi vertices. Furthermore, as shown in the proof of Proposition 3.12,

the closest nuclei to the Voronoi vertices converge to the corresponding ideal nuclei, and so the

distances of Voronoi vertices to their closest nuclei converge, when properly normalized as proto-

delays, to the linear separations of the ideal Voronoi vertices to their corresponding ideal nuclei. It

remains to calculate those distances and take the limit of their normalized distribution. We will use

the normalization corresponding to the exponential separations of (3.3) rather than the proto-delays.

We now continue with evaluating the right-hand side of (4.7). For any compactly supported,

continuous function f : Hd × R+ → R,

E
[ ∑
v∈Vd,0

f
(
v, s(v)

)]
= lim

λ↓0
E
[ ∑
~η∈(X(λ))d+1∩B

f
(
O(~η),

cd
d− 1

λd−1e(d−1)R(~η)
)
1B(~η)∩X(λ)=∅

]
.

By the Slivnyak–Mecke formula, the expectation on the right-hand side is given by

1

(d+ 1)!

∫
B

f
(
O(~x),

cd
d− 1

λd−1e(d−1)R(~x)
)

exp
{
−λd−1VolHd

(
B(~x)

)}
λd

2−1 d~x .

Using the spherical Blaschke–Petkantschin change of variable xi := z+u·θi for (z, u, θ1, . . . , θd+1) ∈
Hd × R+ × (Sd−1)d+1 stated in [Cha18, Proposition 1.1]2, the previous integral becomes

C(d)

∫
Hd×R+

f
(
z,

cd
d− 1

λd−1e(d−1)u
)

exp
{
−λd−1Ωd

∫ u

0
(sinh t)d−1dt

}
(sinhu)d

2−1 dudz, (4.8)

where C(d) is a finite constant. By the change of variable s := cd
d−1λ

d−1e(d−1)u and passing to the

limit λ ↓ 0 with the aid of the Lebesgue dominated convergence theorem, we see that the quantity

(4.8) converges to C ′(d)
∫

Hd×R+

f(z, s)sde−s ds dz for another constant C ′(d). The proof is concluded

by choosing f(z, s) = f1

(
dHd(v,o)

)
f2(s) for f1 and f2 as above.

We close this subsection by showing that the face intensities are not only expectations, but also

a.s. limits on large balls, as well as showing two ergodic limits concerning the separation. For this,

we use the following ergodic theorem of [Nev94, NS97] specialized from the context of a general

probability-measure-preserving action to our setting:

Theorem 4.5 (Specialization of [Nev94, NS97]). Let f be a function on the space of ideal Voronoi

tessellations such that f ∈ Lp with respect to the natural probability measure P on IPVTs for some

p > 1. Let Fu be the set of isometries of Hd that map the origin into the ball Bu = Bu(o) of

hyperbolic radius u and volume bu, and µ be a Haar measure on Möbd normalized so that µ(F1) = b1

(and hence µ(Fu) = bu for all radii, u). Then limu→∞ b
−1
u

∫
Fu
f(gVd) dµ(g) = E[f ] a.s.

2The formula there is missing a factor of 1B(x1, . . . , xd+1) on the left-hand side, where B is as defined here.

Necessarily, {x1, . . . , xd+1} lie on a common sphere, namely, the sphere centered at z with radius u.
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We give three examples.

Proposition 4.6 (Ergodic limits). We adopt the notation of Theorem 4.5.

(i) For 0 ≤ k ≤ d− 1, the counting face intensities satisfy

Id,k = lim
u→∞

µd,k(Bu)

VolHd(Bu)
a.s.

(ii) Let s(z) be the separation of z from the ideal nucleus of its Voronoi cell. Then a.s., for all

t ∈ (0, 1), we have

lim
u→∞

1

VolHd(Bu)

∫
Bu

ets(z) dVolHd(z) =
1

1− t
.

In other words, the limit empirical moment generating function of the separation is the moment

generating function of an Exp(1) random variable.

(iii) Let Du be the empirical distribution of the separations of the Voronoi vertices in Bu from their

associated ideal nuclei. Then Du tends weakly as u→∞ to a Gamma(d+ 1) distribution a.s.

Proof. (i) Let fε(Vd) := µd,k
(
Bε
)
/bε be the number of k-faces within distance ε of o divided by bε.

Note that E[fε(Vd)] = Id,k. Write

A(u, ε) := b−1
u

∫
Fu

fε(gVd) dµ(g).

According to Theorem 4.5, limu→∞A(u, ε) = Id,k a.s. for each ε > 0. We have the inequalities

bu−εA(u− ε, ε) ≤ µd,k(Bu) ≤ bu+εA(u+ ε, ε).

Divide by bu, take u→∞, and then take ε to 0 along a sequence.

(ii) All s(z) have the same distribution, namely, that of R1, which is Exp(1). Since∫
Bu

ets(z) dVolHd(z) =

∫
Fu

ets(go) dµ(g),

the result follows for each t separately from Theorem 4.5. Applying this result to rational t and

noting that ets(z) is monotone in t allows a comparison for irrational t that gives the result.

(iii) Let fε,t(Vd) be the number of vertices within distance ε of o whose separations from their

nuclei are at most t, divided by Id,0 · bε. Then E[fε,t(Vd)] = 1
d!

∫ t
0 x

de−x dx for all ε, t > 0 by

Proposition 4.4 and the refined Campbell theorem. Write

A(u, ε, t) := b−1
u

∫
Fu

fε,t(gVd) dµ(g).

According to Theorem 4.5, limu→∞A(u, ε, t) = 1
d!

∫ t
0 x

de−x dx a.s. for each ε, t > 0. We have the

inequalities

Id,0bu−εA(u− ε, ε, t) ≤ µd,0(Bu)Du(t) ≤ Id,0bu+εA(u+ ε, ε, t).

Divide by Id,0bu, take u→∞, and then take ε to 0 along a sequence. The result of part (i) for k = 0

then gives limu→∞Du(t) = 1
d!

∫ t
0 x

de−x dx a.s. Use this for all rational t together with monotonicity

in t to get the result for all t.
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One can prove similar ergodic theorems for various statistics within horospherical shells. This

follows from the Euclidean ergodic theorem (e.g., [SW08, Theorem 9.3.1]) by using the upper

half-space model, Ud. We also have that the action by translation along a geodesic or along a

horocycle is ergodic.

4.3 Computations via limits as λ→ 0

With Lemma 4.1 at hand, we can now use the explicit results [Iso00b, Iso00a, GKT22a, CCE18] to

compute the k-face intensities. To give the exact expressions, define

c(a) :=
Γ(a)√

π Γ(a− 1/2)

and

jd,k := 2

(
d

k

)
c
(d2

2

)∫ ∞
0

1

coshd
2−1(u)

<
(

1

2
+ i · c

(d+ 1

2

)∫ u

0
coshd−1(v) dv

)k
du. (4.9)

In particular, jd,0 = 1. (It actually turns out that jd,k is the expected sum of the internal angles at

all (d− k − 1)-faces of a simplex in Rd−1 generated by d i.i.d. points with density proportional to

x 7→
(
1 + |x|2

)1/2−d
; see [Kab21, Section 1.4] for more on the values and computation of jd,k.) For

d = 2, 3, 4, 5, we have the following values of (jd,k ; 1 ≤ k ≤ d−1): (1), (3/2, 1/2), (2, 170/143, 27/143),

and (5

2
,
5

3
+

62173301

13970880π2
,

62173301

9313920π2
,−1

6
+

62173301

27941760π2

)
.

Also, define

IDVd :=
2
√
π Γ
(
d+1

2

)d
Γ
(
d2

2

)(
(d− 1)Γ(d2)

)d+1
Γ
(
d2−1

2

) . (4.10)

Theorem 4.7 (Counting face intensities). IDVd is the mean volume of the typical ideal Delaunay

simplex. For 0 ≤ k ≤ d− 1 and d ≥ 2, we have

Id,k =
d+ 1

d+ 1− k
jd,k ·

1

IDVd
.

When k = 0, this limit is asymptotic to
√

2e13/12−d/2dd−1/2 as d→∞.

For 2 ≤ d ≤ 5, the vertex intensity (which is the reciprocal of IDVd) evaluates to

1

π
,

16π

35
,

1287

16π2
,

3981312π2

676039
.

The case of d = 2 is easy directly, since every vertex of Vd is the generalized center of its corresponding

Delaunay triangle, which is an ideal triangle, and because every ideal triangle has area π.

Proof. [GKT22a, Theorem 3.11] gives the mean face vector of the typical cell of V(λ)
d . We then use

Proposition 4.3 to get I
(λ)
d,k and take the limit as λ→ 0. Here is an outline of the calculation of the

limit. The formula for the mean face vectors, [GKT22a, (3.18)], is a sum over an index, s. The term

with s = 0 tends to infinity as λ → 0 much faster than the others, so that is the only one whose

asymptotics concerns us. In the notation of [GKT22a], this term is written 2I∗α,d(d)J̃d,d−k(d− 1/2).

In our notation (see [GKT22a, (2.8)]):
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• I∗α,d(d) = αdI∗α,d(d)/d!,

• J̃d,d−k(d− 1/2) = jd,k,

with α := 2dλ/c̃d,d, c̃a,b := Γ(b)/
(
πa/2Γ(b− a/2)

)
, and

I∗α,d(d) = c̃1,(d2+1)/2

∫ ∞
0

sinhd
2−1 ϕ · exp

{
−αc̃1,(d+1)/2

∫ ϕ

0
sinhd−1 θ dθ

}
dϕ.

Taking the limit λ→ 0, we can approximate in the integrand sinh θ by eθ/2 and likewise sinhϕ

by eϕ/2. Approximate the resulting inner integral by e(d−1)ϕ/
(
(d− 1)2d−1

)
and change variables to

ψ := e(d−1)ϕ. Then observe that the resulting integral is asymptotic to 1/
(
2d(d−1)αc̃1,(d+1)/2

)
times

the dth moment of an exponential random variable with parameter (d− 1)2d−1/(αc̃1,(d+1)/2).

We remark that for k = 0, we could also have used the vertex intensity for λ > 0 given in [CCE18,

Theorem 1.2(ii)] (which does not appear in the published version, [CCE21]). Furthermore, instead

of using the tail bounds for k = 0, we could have used the fact that the volumes of simplices in

Hd are bounded (see, e.g., [Bow94, Lemma 5.2]), which yields convergence of the mean volumes of

typical Delaunay simplices and thereby convergence of vertex intensities.

Corollary 4.8 (Typical face vectors). Let T (λ)
d be the typical cell in the Poisson–Voronoi

tessellation of Hd with intensity λ > 0. For k, ` ∈ [0, d− 1], the limit as λ→ 0 of the mean number

of k-faces of T (λ)
d divided by the mean number of `-faces of T (λ)

d is jd,k/jd,`.

Proof. Use Proposition 4.3 and Lemma 4.1 to get that the quotient has limit
(d+1−k)Id,k
(d+1−`)Id,` . Then

substitute the values from Theorem 4.7.

This can also be proved from the formula for the mean f -vector of T (λ)
d given in [GKT22a,

Theorem 3.11], using the fact that the term with s = 0 in (3.18) there approaches ∞ much faster

than the other terms do (see (2.7) there for the definition of the terms).

We can combine Proposition 4.3 with results of Isokawa [Iso00b, Iso00a] to compute integral

intensities in dimensions 2 and 3.

Proposition 4.9 (Integral face intensities through Isokawa). We have

Ĩ2,1 =
2

π
, Ĩ3,2 =

4

3
, Ĩ3,1 =

8π

15
.

Proof. We first note that 2 · Ĩ2,1 has already been computed in [BCP22, page 5] using [Iso00b] as

the λ → 0 limit of the mean surface area of the typical cell of V(λ)
2 divided by the mean volume

of the typical cell of V(λ)
2 . By Proposition 4.3, this limit amounts to 2 · Ĩ2,1 since the mean typical

cell volume is 1/λ. To compute Ĩ3,2 and Ĩ3,1, we proceed similarly and use the mean surface area

and mean perimeter length of the typical cell of V(λ)
3 in [Iso00a, Theorem 1.1] divided by the mean

volume of the typical cell of V(λ)
3 and by the combinatorial factors 2 and 3 respectively, as every

2-dimensional face is common to 2 and every 1-dimensional face is common to 3 cells in V(λ)
3 . More

specifically, by Lemma 4.1,

Ĩ3,2 = lim
λ→0

26π2

3 · 2
λ2 · J4(λ) and Ĩ3,1 = lim

λ→0

26π4

5 · 3
λ3 · J6(λ), (4.11)
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where

Jm(λ) :=

∫ ∞
0

exp [−2πλ(sinh r cosh r − r)] sinhm r dr for m ∈ N .

For small λ, the maximum of the integrand occurs at rmax = 1
2 log( mπλ)+o(1). Letting x := r−rmax,

the dominated convergence theorem results in

lim
λ→0

λm/2 · Jm(λ) =

(
m

π

)m/2
2−m

∫ ∞
−∞

exp{−m
2

e2x +mx} dx =
1

2(2π)m/2
Γ
(m

2

)
.

Substituting the right-hand side evaluated at m = 4 and m = 6, respectively, into (4.11) concludes

the proof.

Table 1 gathers these integral face intensities with the corresponding counting face intensities.

An extension of these results is given in Proposition 5.3.

Ĩ(d,k)

/
I(d,k) k = 0 k = 1 k = 2

d = 2 1
π

/
1
π

2
π

/
3

2π

d = 3 16π
35

/
16π
35

8π
15

/
32π
35

4
3

/
16π
35

Table 1: Values of Ĩ(d,k) and I(d,k) for d = 2 and d = 3, 0 ≤ k ≤ d− 1. Note that the mean length of

a typical edge for d = 2, i.e., Ĩ(2,1)

/
I(2,1) by Proposition 4.2, is equal to 4/3, while for d = 3, it is

equal to 7/12.

5 The tile of the origin (zero cell)

In this section we will describe the law of the cell Cd containing the origin in the upper half-space

model Ud of hyperbolic space, once the ideal nucleus closest to o (the only end of its tile by Theorem

1.3) is sent to ∞ (Theorem 1.4). We then use it to compute the hole probability, as well as several

other quantitative characteristics of Cd.

5.1 A deposition model for the tile of the origin

Recall the construction of Vd = Vor
(
(Θi, Ri)i≥1

)
given in Theorem 1.2. We will focus here on the

cell Cd containing the origin o ∈ Hd. Recall that by our change of variable,

Ri =
cd

d− 1
exp
{

(d− 1)Di

}
are the radii of the nuclei on the corona. Clearly, the origin is closer to the nucleus (Θ1, R1) than to

any other ideal nuclei. We will consider the tile Cd in the upper half-space model and where the

ideal nucleus angle Θ1 has been sent to ∞ in Ud.
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Proof of Theorem 1.4. By Corollary 3.4, inside the upper half-space model Ud and where Θ1 is sent

to ∞, for all i ≥ 2, the bisector between (Θ1, R1) and (Θi, Ri) is a Euclidean hemisphere centered at

Ste(Θi) with radius
√

1 + |Ste(Θi)|2(R1/Ri)
1

2(d−1) , where Ste(Θi) ∈ Rd−1 denotes the stereographic

projection of Θi.

By Lemma 3.1, conditional on R1, the point process
(
Ste(Θi), Ri −R1

)
i≥2

is a PPP with intensity

1

cd

1(
1 +

∑d−1
i=1 x

2
i

)d−1
dx1 · · · dxd−1 ⊗ dt1t>0

in Rd−1×R+. In a first step, we express the point process of centers and radii in terms of this latter

PPP, as follows:(
Ste(Θi),

√
1 + |Ste(Θi)|2(R1/Ri)

1
2(d−1)

)
=
(

Ste(Θi),
√

1 + |Ste(Θi)|2
( R1

R1 + (Ri −R1)

) 1
2(d−1)

)
.

In a second step, conditionally on R1 = s, we apply the Poisson mapping theorem to com-

pute the intensity of the point process of the centers and radii by the change of variable ρ :=√
1 + |x|2

(
s
s+t

) 1
2(d−1) , which gives, for a test function u,

1

cd

∫
Rd−1×R+

u
(
x,
√

1 + |x|2
( s

s+ t

) 1
2(d−1)

) 1(
1 + |x|2

)d−1
dx1 · · · dxd−1 dt

=
d− 1

cd

∫
Rd−1×R+

u (x, ρ)
2s

ρ2d−1
11+|x|2≥ρ2 dx1 · · · dxd−1 dρ.

Recalling that R1 is an Exp(1) random variable and noting that d−1
cd

Exp(1) = Exp( cd
d−1) concludes

the proof.

5.2 The hole probability

In this section, we use the preceding construction of the zero cell of Vd to compute the probability

for Cd to contain a ball centered at the origin: this provides the law of the distance of o to ∂Cd.

Proposition 5.1 (Hole probability). The hole probability, i.e., the probability that the ball Bu(o)

centered at o with hyperbolic radius u is contained in Cd, is given by, respectively,

(i) conditional on R1 = s,

P
[
Bu(o) ⊂ Cd

∣∣ R1 = s
]

= exp
(
−sId(u)

)
;

(ii) averaging on the value of R1,

P[Bu(o) ⊂ Cd] =
1

1 + Id(u)
.

Here,

1 + Id(u) =
2d−1Γ(d/2)
√
π Γ
(
d−1

2

) (coshu)1−d
∫ 1

0

td−2
(
1− t2

) d−3
2

(1− t tanhu)2d−2
dt.

In particular, P
[
Bu(o) ⊂ Cd

∣∣ R1 = s
]
≤ e−s(d−1)u and P[Bu(o) ⊂ Cd] ≤ e−(d−1)u; that is, the

distance from o to the boundary of Cd is stochastically dominated by an Exp
(
s(d − 1)

)
random
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variable when conditioned on R1 = s and is stochastically dominated by an Exp(d − 1) random

variable unconditionally. Also, P[Bu(o) ⊂ Cd] ≥ e−2(d−1)u, that is, the distance from o to the

boundary of Cd stochastically dominates an Exp
(
2(d− 1)

)
random variable.

Proof. First, we condition on R1 = s, so that the intensity measure of the Poisson point process (x, ρ)

is given by 2sd−1
cd

dx dρ
ρ2d−1 1

ρ≤
√

1+|x|2 . Second, we parametrize Bu(o) in the upper half-space model Ud:
here, Bu(o) is represented by a Euclidean ball B(Co, Ro) of Euclidean center Co = (0, . . . , 0, coshu)

and Euclidean radius Ro = sinhu. Hence the event Bu(o) ⊂ Cd corresponds to the event that this

point process has no point in the region
{

(x, ρ) ∈ Π ; (ρ+Ro)2 ≥ |x|2 + |Co|2
}

. Therefore, by

Theorem 1.4, the conditional hole probability is

P[Bu(o) ⊂ Cd | R1 = s] = exp
{
−s Id(u)

}
,

where

Id(u) :=
2(d− 1)

cd

∫
Rd−1

dx

∫
R+

dρ

ρ2d−1
1(ρ+Ro)2≥|x|2+C2

o
× 1ρ2≤1+|x|2

=
1

cd

∫
Rd−1

dx
1(√

|Co|2 + |x|2 −Ro

)2d−2
− 1

cd

∫
Rd−1

dx
1(

1 + |x|2
)d−1

.
(5.1)

The equality arises from the fact that the region
{

(x, ρ) ∈ Π ; (ρ+Ro)2 ≥ |x|2 + |Co|2
}

contains the

set
{

(x, ρ) ; ρ2 ≥ 1 + |x|2
}

, which is where the hemisphere corresponding to (x, ρ) contains o. The

second integral is equal to 1 by Lemma 3.1. For the first integral, change to polar coordinates, then

to sinh η := |x|/|Co|, and finally to t := 1/ cosh η. This gives (i), which immediately implies (ii).

The last unconditional inequalities are equivalent to e(d−1)u ≤ 1 + Id(u) ≤ e2(d−1)u for all u ≥ 0.

(For the conditional inequality, we also use that e(d−1)u−1 ≥ (d−1)u.) These follow from elementary

calculations: Because 1 = e−2u + 2(sinhu)
√

e−2u ≤ e−2u + 2(sinhu)
√

e−2u + |x|2, it follows that

|Co|2 + |x|2 ≤
(√

e−2u + |x|2 +Ro

)2
. Therefore,

1 + Id(u) =
1

cd

∫
Rd−1

dx(√
|Co|2 + |x|2 −Ro

)2d−2
≥ 1

cd

∫
Rd−1

dx(
e−2u + |x|2

)d−1

=
1

cd

∫
Rd−1

e(d−1)u dy(
1 + |y|2

)d−1
= e(d−1)u ,

where we used the change of variables y := eux. Also, (1− e−2u)(1 + |x|2) ≥ (1− e−2u)
√

1 + |x|2 =

2e−u(sinhu)
√

1 + |x|2, whence |Co|2 + |x|2 ≥
(
e−u
√

1 + |x|2 +Ro

)2
. Hence,

1 + Id(u) =
1

cd

∫
Rd−1

dx(√
|Co|2 + |x|2 −Ro

)2d−2
≤ 1

cd

∫
Rd−1

e2(d−1)u dx(
1 + |x|2

)d−1
= e2(d−1)u .

Remark 5.2. For d = 2 we have I2(u) = 1
π

(
4 (arctan eu) cosh2 u+ 2 sinhu

)
− 1, which gives, for the

integrated hole probability,

P[Bu(o) ⊂ C2] =
π

4 (arctan eu) cosh2 u+ 2 sinhu
, (5.2)

a result first obtained in [Bhu19] (Theorem 3.3) by computing the hole probability in Poisson–Voronoi

tessellations with positive intensity λ on Hd and then taking the limit as λ→ 0. It is easily seen,
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using the change of variables v := 1− t tanhu, that for odd d ≥ 3, the (integrated) hole probability

reduces to a rational function of eu. For example, when d = 3 we get

P[Bu(o) ⊂ C3] =
3e−2u

2 + e2u
.

In dimension 2, differentiating the above expression (5.2) yields that the density for the distance

from o to ∂V2 is

u 7→
π coshu

(
2(arctan eu) sinhu+ 1

)(
sinhu+ 2(arctan eu) cosh2 u

)2 ,

whose value at 0 is 4/π. The tail probability is asymptotic to 2e−2u as u → ∞. The mean

distance is 0.66137+, and the median distance is 0.50264−. The tail probabilities are plotted in

Figure 5.1. These statistics are reflected in the portrait of the cell given by 60 (pseudoindependent,

pseudorandom) samples in Figure 5.2. Here are some additional nice values: for d = 3, the mean

distance is 3(2− log 3)/8 = 0.34− and median is 1
2 log(

√
7− 1) = 0.25−, while for d = 5, the mean is

5
(
279 log 7− 184

√
6 arctan(

√
6/13)− 378

)
/2352 = 0.17+ and median is 0.12+.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: The tail probability to be farther than hyperbolic distance u from the ideal Voronoi

edges in dimension 2.

Proposition 5.3 (Integral face intensities Ĩd,d−1). For all d ≥ 2, we have

Ĩd,d−1 =
2Γ(d2)Γ(d)

Γ(d−1
2 )Γ(d− 1

2)
.

The first few values are 4/π, 8/3, 64/(5π), and 192/35. For large d, it is asymptotically√
2d− 9

4
√

2
+O(1

d).

Proof. Fix d ≥ 2, and for λ, ε > 0, consider the probability that the origin is within distance less

than ε from the boundary ∂V(λ)
d :=

⋃
V(λ)
d,d−1 of the Poisson–Voronoi tessellation V(λ)

d with intensity

λ on Hd:

h(ε, d, λ) := P
[
Bε(o) ∩ ∂V(λ)

d 6= ∅
]
.
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Figure 5.2: A portrait of the cell of the origin in two dimensions given by 60 samples. Each

corresponding ideal nucleus is at the top.
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By isometry invariance, h(ε, d, λ) can be interpreted as the mean volume (per unit of volume of Hd)

of the region within distance ε from ∂V(λ)
d . We then have the following limit

h(ε, d, λ)

ε
−−−→
ε→0

Ĩ
(λ)
d,d−1

Lem. 4.1−−−−−→
λ→0

Ĩd,d−1 (5.3)

and the one in which we interchange the order of limits, which can be evaluated explicitly thanks to

our results,

lim
ε→0

lim
λ→0

h(ε, d, λ)

ε
=

Thm. 1.3
lim
ε→0

P
[
Bε(o) ∩ ∂Vd 6= ∅

]
ε

= − d

dε
P
[
Bε(o) ⊂ Cd

]∣∣∣∣
ε=0

=
Prop. 5.1

2Γ(d2)Γ(d)

Γ(d−1
2 )Γ(d− 1

2)
.

We claim that exchanging the order of limits gives the same result, whence the above display

computes Ĩd,d−1.

To establish our claim, suppose that we have a sequence C(j) =
(
(C

(j)
i ; i ≥ 1)

)
j≥1

of normal

Voronoi tessellations that converges to a normal, ideal Voronoi tessellation C = (Ci ; i ≥ 1) as

j →∞. Fix 1 ≤ k ≤ d− 1. Denote the ε-neighborhood of the k-skeleton of a tessellation C by C(ε).

Suppose that x is an interior point of a k-face of a cell, Ci. Then x is a limit of interior points of

k-faces of C
(j)
i but not of any other k-faces, because faces are convex and the tessellations are normal.

This implies that ε−1Vol
(
C(j)(ε)∩B1(o)

)
converges to ε−1Vol

(
C(ε)∩B1(o)

)
as j →∞ uniformly in

ε ∈ (0, 1), whence limj→∞ limε→0 ε
−1Vol

(
C(j)(ε)∩B1(o)

)
= limε→0 limj→∞ ε

−1Vol
(
C(j)(ε)∩B1(o)

)
.

In particular, this holds a.s. for V(λ)
d and Vd if we take a coupling that converges a.s. as λ→ 0. As

in the proof of Lemma 4.1, uniform integrability shows that

lim
λ→0

lim
ε→0

E
[
ε−1Vol

(
V(λ)
d (ε) ∩B1(o)

)]
= E

[
lim
λ→0

lim
ε→0

ε−1Vol
(
V(λ)
d (ε) ∩B1(o)

)]
= E

[
lim
ε→0

lim
λ→0

ε−1Vol
(
V(λ)
d (ε) ∩B1(o)

)]
= lim

ε→0
lim
λ→0

E
[
ε−1Vol

(
V(λ)
d (ε) ∩B1(o)

)]
.

Choose k = d − 1. Since E
[
Vol
(
V(λ)
d (ε) ∩ B1(o)

)]
= h(ε, d, λ)Vol

(
B1(o)

)
, dividing by Vol

(
B1(o)

)
gives our claim.

It would be interesting to compute the hole probabilities for lower-dimensional faces, in particular

for vertices, but the calculations seem considerably more intricate. As in the preceding proposition,

this would provide one way to compute Ĩd,k for other k.

5.3 Asymptotic properties of the zero cell: the typical cell

In this section, we give the basic properties of the underlying stationary model defining the law of

Cd far away from the origin. It is obtained from the original deposition model of Theorem 1.4 by

removing the indicator function in the intensity (1.3), which ensured that no ball would contain the

origin.
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More precisely, following the proof of Theorem 1.4 in Section 5.1, conditioning on the value of

the smallest radius R1 = s, we denote by Td = Td(s) the random closed subset obtained by removing

the balls whose centers and radii (x, ρ) are distributed according to a Poisson point process with

intensity

2
d− 1

cd
sdx⊗ dρ

ρ2d−1
. (5.4)

In their natural coupling, the sets ∂Td(R1) and ∂Cd differ by at most 2(d− 1)R1 boundary faces in

expectation given R1 (and hence at most 2(d− 1) faces without conditioning on R1), as we saw in

evaluating the last integral of (5.1). In particular, the asymptotic properties of Cd and of Td(R1)

are the same a.s. Clearly, the law of Td is Rd−1-invariant and ergodic. Generally, we are interested

only in geometric properties of Td that are Möbd-invariant. For example, given t > 0, the homothety

(x, ρ) 7→ (tx, tρ) of Ud = Rd−1 × R+ is an isometry that preserves ∞. It corresponds to changing s

in (5.4) to td−1s. Thus, Td(s) for all s > 0 can be coupled to be isometric to each other. Hence, in

studying Td(s), the value of s will mainly be important for the natural coupling of Cd with Td.
By virtue of Corollary 3.4, another way to describe Td(s) is that it is the ideal Voronoi cell of the

ideal nucleus (∞, s) in Vor
(
X ∪ {(∞, s)}

)
, where X is a PPP with intensity µd on ∂̃Hd. Because

Möbd acts transitively on ∂̃Hd preserving µd (Lemma 3.10), we have that Td(s) has the same law

as the cell C(Y ) of Y in Vor
(
X ∪ {Y }

)
for any fixed Y ∈ ∂̃Hd, provided that we restrict to the

Möbd-invariant σ-field.

Consider now the typical cell T (λ)
d in Vor(X(λ)) for λ > 0. As before, we use the nucleus of a cell

for its center, so that the typical cell is the cell of a typical nucleus in X(λ). By Slivnyak’s theorem,

as explained in Section 4.1.2, it follows that T (λ)
d is the cell of o in Vor

(
X(λ) ∪ {o}

)
. Again, this

has the same law on the Möbd-invariant σ-field as the cell C(z) of z in Vor
(
X(λ) ∪ {z}

)
for any

z ∈ Hd. Consider temporarily the ball model of Hd and fix any z 6= o. Let us use the dilations X̃(λ)

of Remark 3.5 together with the corresponding dilations z(λ), and let λ → 0. The cell C(z(λ)) in

Vor(X̃(λ)∪{z(λ)}) will tend to the cell of Y := limλ→0 z
(λ) in Vor

(
(Θ,R)∪{Y }

)
in the Fell topology

on Hd, whose law is thus that of Td. Therefore, it is reasonable to call Td the typical (ideal) cell .

There is another reason for that nomenclature. Namely, we have constructed our IPVT based

on a PPP on the corona, ∂̃Hd. We regard this as a marked PPP on ∂̃Hd with the mark of an ideal

nucleus being its cell in Hd. In this way, we may define a typical cell of Vd as the cell of a typical

ideal nucleus. However, the action of Möbd on ∂̃Hd does not yield compact isotropy groups. Instead,

we may use an alternative notion of Palm distribution based on disintegrations [Kal17, Chapter 6].

For a PPP X on a standard Borel space E, the Palm distribution at x ∈ E is X + δx according to

Mecke’s theorem [Kal17, Lemma 6.15]. In our case, if X is a PPP with intensity µd on ∂̃Hd and

Y ∈ ∂̃Hd, then the typical cell corresponding to Y is the cell of Y in Vor
(
X ∪ {Y }

)
. Transitivity

allows us to call any fixed Y typical.

5.3.1 Height and angle of the boundary

The typical cell Td can be seen as the epigraph (see Figure 1.3 for the graph) of a stationary random

function H : Rd−1 → R+ whose law is computed below. Specifically, for x0 ∈ Rd−1, let us denote by

H(x0) the height of ∂Td at x0 and by Θ(x0) the angle the hypersurface ∂Td makes with the vertical

direction at that point (in other words, the complement of the angle between the vertical direction
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and the direction orthogonal to the hypersurface). It should be clear that this angle is defined for

almost all x0 ∈ Rd−1, and since the law of
(
H(x0),Θ(x0)

)
is independent of x0, we denote it for

short by (H,Θ).

Proposition 5.4 (Height and angle of the boundary). For d ≥ 2, the law of (H,Θ) is,

(i) conditional on R1 = s,( 1

Hd−1
, sin2(Θ)

)
∼ Exp (s)⊗ Beta

(d+ 1

2
,
d− 1

2

)
;

(ii) averaging on the value of R1,(
Hd−1, sin2(Θ)

)
∼ 1− U

U
⊗ Beta

(d+ 1

2
,
d− 1

2

)
,

where U is a uniform random variable over [0, 1].

Proof. (i) Without loss of generality, we consider the variables
(
H(0),Θ(0)

)
. Condition on R1 = s.

In a preliminary step, we study the first marginal of this pair, namely, the law of H(0). Recall that

the intensity measure of the Poisson point process Πd is given by (x, ρ) 7→ 2sd−1
cd

dx⊗ dρ
ρ2d−1 . The

event H(0) ≤ h corresponds to the event where this point process has no point inside the region{
(x, ρ) ; ρ2 > |x|2 + h2

}
. Hence, changing variables to y := x/h and σ := ρ/h gives

P[H(0) ≤ h] = exp
{
−2s

d− 1

cd

∫
Rd−1×R+

dx
dρ

ρ2d−1
1ρ2≥h2+|x|2

}
= exp

{
−2s

d− 1

cdhd−1

∫
Rd−1×R+

dy
dσ

σ2d−1
1σ2≥1+|y|2

}
= exp

{
− s

hd−1

}
.

(5.5)

Let g : R+ × [0, π/2)→ R+ be a nonnegative Borel function. For |x| ≤ ρ, let A(x, ρ) be the event

that ρ2 − |x|2 = max{ρ′2 − |x′|2 ; (x′, ρ′) ∈ Πd}. Then

g(H,Θ) =
∑

(x,ρ)∈Πd,
|x|≤ρ

g
(√

ρ2 − |x|2, arccos
|x|
ρ

)
1A(x,ρ).

Also, Πd \
{

(x, ρ)
}

has the same law as Πd itself. Thus, by Mecke’s formula,

E
[
g(H,Θ)

]
= 2s

d− 1

cd

∫
Rd−1×R+

dx dρ

ρ2d−1
g
(√

ρ2 − |x|2 , arccos
|x|
ρ

)
1|x|≤ρ P

[
H ≤

√
ρ2 − |x|2

]
.

Using polar coordinates and (5.5) yields

E
[
g(H,Θ)

]
= 2s

d− 1

cd
Ωd−1

∫
R+×R+

dr rd−2 dρ

ρ2d−1
g
(√

ρ2 − r2 , arccos
r

ρ

)
1r≤ρ P[H ≤

√
ρ2 − r2 ]

=

∫
R+×[0,π/2)

(
(d− 1)

s

hd
exp
{
− s

hd−1

})(
2d

Γ(d2)
√
π Γ(d−1

2 )
sind θ cosd−2 θ

)
g(h, θ) dhdθ,

(5.6)

which implies (i).

(ii) Recalling that R1 ∼ Exp(1), we find that P[Hd−1 < t] = t/(t + 1) for t > 0, i.e.,

Hd−1 ∼ (1− U)/U , as desired.
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5.3.2 Intensities of the Laguerre tessellation Ld−1

For 0 ≤ k ≤ d− 2, we can define the k-dimensional facets of the hypersurface ∂Td. After orthogonal

projection, this defines a random tessellation Ld−1 of Rd−1 whose law is stationary; see Figures 5.3

and 5.4.

Figure 5.3: A piece of the hypersurface ∂T3 seen from various angles. After orthogonal projection, it

yields a tessellation L2 of R2.

Figure 5.4: A piece of the hypersurface ∂T3 seen from above, which also shows the tessellation L2 of

R2.

This tessellation Ld−1 is actually a special case of point processes studied in [GKT22b]: the

relevant process for us is what they call the β′-model with certain choices for their parameters β and

γ. They use the PPP on Rd−1 × R− of nuclei and heights with intensity given in [GKT22b, (3.2)],

where their −h corresponds to our ρ2: see the last line of [GKT22b, p. 1258]. The point is that the

Laguerre diagram in Rd−1 corresponding to their power function is precisely the tessellation Ld−1

for an appropriate choice of their parameters, β and γ. We use β := d. Their other parameter γ is a

scaling factor. To be able to make the correspondence, we need to match our intensity in (5.4) with

their intensity. We will condition that R1 = s. Writing (5.4) as sd−1
cd

dx d(ρ2)/(ρ2)d, we see that for

the two models to match, we need to choose γ := s
√
π Γ(d/2)/Γ

(
d−1

2

)
.

In [GKT22b, Theorem 2], they compute moments of volumes of weighted typical cells of the
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Delaunay tessellation corresponding to their Laguerre diagram. Of most interest to us is the case

where β := d as we said, their ν := 0, and their s := 1. This yields after some simplification the

following:

Lemma 5.5. The mean (Euclidean) volume of the typical Delaunay cell of Ld−1 is s · DVd, where

DVd :=
Γ(d+1

2 )

2 · (d− 2)!

(Γ(d−1
2 )

Γ(d/2)

)d Γ(d2/2)

Γ(d
2+1
2 )

.

For example, DVd for 2 ≤ d ≤ 5 takes the following values: π/3, 35/(32π), (16π2)/2145, and

676039/(5971968π2).

[GKT22b, Proposition 3] gives the face intensities of the Voronoi tessellation in terms of those of

the Delaunay tessellation by duality. The latter are given on the same page in Theorem 6.3 This

yields the following:

Lemma 5.6 (Counting face intensities). For 0 ≤ k ≤ d− 1, the (Euclidean) counting intensity

of the k-faces of Ld−1 and thus of ∂Td(s) is

jd,k
s · DVd

,

where jd,k is defined in (4.9).

The values of (jd,k/DVd ; 0 ≤ k ≤ d− 1) for 2 ≤ d ≤ 5 are (3/π, 3/π), (32π/35, 48π/35, 16π/35),(
2145/(16π2), 2145/(8π2), 1275/(8π2), 405/(16π2)

)
, and(5971968π2

676039
,
14929920π2

676039
,
641088

245245
+

9953280π2

676039
,
4461632

245245
,
820544

245245
− 995328π2

676039

)
.

This allows us to deduce the mean f -vector of the typical cell in Ld−1, which equals the mean

f -vector of the typical boundary cell of Td:

Theorem 5.7 (Mean face vectors).4 For 0 ≤ k ≤ d − 2, the mean number of k-faces of the

typical cell of the boundary of Td is (d− k)jd,k/jd,d−1.

Proof. Each k-face belongs to d− k cells a.s., being the intersection of that many cells. Thus, the

result follows from [SW08, Theorem 10.1.2] and Lemma 5.6.

The values for the mean f -vectors for small d are as follows: (6, 6) for d = 3; (572/27, 286/9,

340/27) for d = 4; and

(139708800π2, 279417600π2, 6(62173301 + 23284800π2), 373039806π2)

62173301− 4656960π2

for d = 5. When d = 3, the 1-skeleton of T3 is a 3-regular graph a.s., whence one can deduce already

from Euler’s formula that the mean number of sides per face is 6.

3However, there are two typos: Here and before, the factor of 1 should be i and the subscript of c′ in the last line

should have +1 in place of −1. These mistakes stem from a mistake at the bottom of p. 1282 when quoting “[14] (see

Theorem 1.7 and the discussion thereafter)” and then a slight miscalculation.
4This is a special case of [GKT22b, Theorem 7] as stated for Ld−1, but there are several typos there: The

denominator in both right-hand sides should instead be multiplying the middle quantities, and both the middle and

right-hand sides should be divided by J
(′)
d,1(β − 1/2). The displayed equation in the proof is missing a factor on the

right-hand side of γd−1(Vβ), which equals Jd,1(β − 1/2)/E[Vol(Zβ,0)].
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Remark 5.8. Comparing Theorem 5.7 with Corollary 4.8 with ` := d−1 there shows agreement when

we note that each k-face of ∂Td belongs to d− k cells of ∂Td, but we cannot explain this coincidence.

5.3.3 Intensities of ∂Td

Beware that Lemma 5.6 deals only with the intensities of the projection of ∂Td. But we can combine

it with Proposition 5.4 to deduce some information on ∂Td ∈ Rd−1 × R+ in our next result:

Corollary 5.9 (Mean volume of boundary cells). The volume of the typical (d− 1)-face of

∂Td(s) is

d− 1

2jd,d−1

(Γ(d−1
2 )

Γ(d/2)

)d−1 Γ(d2/2)

Γ(d
2+1
2 )

Γ(d− 1/2).

Proof. By Lemma 5.6 and the ergodic theorem (e.g., [SW08, Theorem 9.3.1]), the number of (d− 1)-

faces of Ld−1 in a (d − 1)-dimensional Euclidean ball of radius ρ about 0 is a.s. asymptotic to

bρjd,d−1/(s · DVd), where bρ is the Euclidean volume of that ball. By Proposition 5.4, the hyperbolic

(d− 1)-volume of the union of those faces is a.s. asymptotic to

bρE[H1−d/ sin Θ] = bρE[H1−d]E[1/ sin Θ] = bρ
B
(
d/2, (d− 1)/2

)
s ·B

(
(d+ 1)/2, (d− 1)/2

)
= bρ

Γ(d/2)Γ(d)

s · Γ(d− 1/2)Γ
(
(d+ 1)/2

) .
Dividing the latter by the former gives the result.

The first few values of these volumes for d = 2, 3, 4, 5 are 4/3, 35/(12π), 1024π/6075, and

52055003/(746079612− 55883520π2).

Remark 5.10 (Integral (d− 1)-face intensities). We may regard Td as the union of the regions

over its boundary (d− 1)-faces (that is, the cones of those faces with apex at ∞). We may then

compare the typical face volume given by Corollary 5.9 with the volume of its cone, which is, by

similar reasoning, E[
∫∞
H dy/yd] = E[H1−d/(d− 1)] = 1/s(d− 1) divided by jd,d−1/(s ·DVd). Dividing

the typical face volume by this yields

(d− 1)Γ(d/2)Γ(d)

Γ(d− 1/2)Γ
(
(d+ 1)/2

) .
This equals the integral face intensity we obtained in Proposition 5.3, although we do not have an

explanation for this coincidence. Of course, we did not need Lemma 5.6, nor even the distribution of

H; the result is simply E[H1−d/ sin Θ]/E[
∫∞
H dy/yd] = (d− 1)E[1/ sin Θ].

Remark 5.11 (Hyperbolic vs. Euclidean volumes of Delaunay simplices). If we compare

DVd with IDVd defined in (4.10), we discover that IDVd = d+1
d−1DVd for all d ≥ 2. A heuristic

explanation for this coincidence follows. We desire to explain why the hyperbolic intensity of the

vertices of Vd (i.e., 1/IDVd) is equal to s(d− 1)/(d+ 1) times the Euclidean intensity of the vertices

of Ld−1 conditional on R1 = s (i.e., 1/(s ·DVd)). First, note that the latter is the Euclidean intensity

of the vertices of Td, disregarding their heights. Next, if we think of the hyperbolic intensity of the

vertices of Td per unit volume of the zero cell Cd, then we can convert Euclidean (d− 1)-volume to

hyperbolic d-volume by multiplying by E[
∫∞
H dy/yd] = 1/s(d− 1), thus multiplying the Euclidean
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intensity by s(d − 1). However, each vertex belongs to d + 1 cells of Vd, so to get the hyperbolic

intensity of vertices per unit volume of Hd, we should divide this by d+ 1.

Alternatively, we can say that the ideal Delaunay simplices associated to the vertices of Td are

the simplices whose ideal vertices are ∞ and the vertices of the Delaunay simplices of Ld−1 (which

are some of the nuclei of the Laguerre diagram). The portions of their hyperbolic volumes that lie

in the cell of ∞ is 1/s(d− 1) times their Euclidean volumes. Because they have d+ 1 vertices, their

total hyperbolic volumes are d+1
s(d−1) times their Euclidean volumes.

We conclude this section by computing the intensity of the vertices in ∂Td. Note that the vertices

do not form a Poisson point process; they are merely a point process.

Proposition 5.12 (Vertex intensity). The process of vertices on the hypersurface ∂Td(s) has

the intensity
1

s · DVd
Leb⊗ ζ,

where ζ is the probability distribution of a random variable Z when 1/Zd−1 has law Gamma(d+ 1, s).

Thus, for z > 0,

dζ(z) =
(d− 1)sd

d!

e
− s

zd−1

zd2
dz.

Proof. Because the vertices of Ld−1 have finite intensity, the vertices of ∂Td form a marked point

process. By stationarity, the intensity measure of the vertices of ∂Td is a constant times Leb⊗ ζ for

some probability measure, ζ [SW08, Theorem 3.5.1]. By Lemma 5.6, the constant is 1/(s · DVd). It

remains to find ζ.

Let f be a nonnegative Borel function defined on Ud = Rd−1 × R+. We will use ~x to denote

points in Rd−1. For σ := ( ~x1, . . . , ~xd, ρ1, . . . , ρd) ∈ (Rd−1)d × (R+)d, write v(σ) :=
⋂d
i=1 ∂B(~xi, ρi).

Let A be the set of σ where v(σ) is a single point. By the Slivnyak–Mecke formula and (5.5), there

is a constant αd,s whose value does not concern us such that

E

[ ∑
v a vertex

of Td

f(v)

]
= αd,s

∫
A
f
(
v(σ)

)
e
− s

zd−1

d∏
i=1

d~xi
dρi

ρ2d−1
i

, (5.7)

where z = z(σ) is the dth coordinate of v(σ). Let Σ := {σ ∈ A ; z(σ) = 1}. Note that for all t > 0

and σ ∈ Σ, we have z(t · σ) = t. There is a function h : Σ→ R+ such that

1A

d∏
i=1

d~xi
dρi

ρ2d−1
i

= h(σ) dσ
dt

td2

for integration on A = Σ× R+. Writing v(t · σ) =
(
~x(σ), t

)
, we obtain

E

[ ∑
v a vertex

of Td

f(v)

]
= αd,s

∫
Σ×R+

f
(
v(t · σ)

)
e
− s

td−1 h(σ) dσ
dt

td2
= αd,s

∫
Ud
f(~x, t)e

− s

td−1 h′(~x) d~x
dt

td2

for another function h′ : Rd−1 → R+ arising from changing coordinates for σ∈ Σ in terms of ~x and

other variables—which we integrate out.
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Remark 5.13 (Separations from the ideal nucleus at ∞). The separations of vertices on the

hypersurface ∂Td to the ideal nucleus at ∞ are Möbd-invariant and have law Gamma(d+ 1). This is

because the separation of (~x, z) from (∞, 1) is 1/zd−1 by Lemma 3.3, and Proposition 5.12 showed

that the law of 1/Zd−1 is Gamma(d+ 1). Thus, the distribution of separations is the same as that

of the typical ideal Voronoi vertex, which we found in Proposition 4.4, but we have no explanation

for the coincidence.

6 Ideal Poisson–Voronoi tessellations on regular trees

In this section, we apply our abstract results of Section 2 to the k-regular tree (k ≥ 3), denoted by

Tk with origin vertex o. We regard Tk as a real tree by identifying each edge with a unit-length real

segment, so that it carries a natural length measure µ induced by Lebesgue measure on its edges,

and a geodesic distance dTk . As described in the introduction, one can then consider a Poisson

process of points X(λ) = (X
(λ)
1 , . . .) which are ranked according to their increasing distances to o. In

contrast to the case of hyperbolic spaces, here the asymptotic law of delays will depend upon the

fractional part of logk−1(λ) as λ→ 0. More precisely, for λ ∈ (0, 1) define

`λ := −blogk−1(kλ)c, and put ξλ := (k − 1)`λ · k · λ ∈ [1, k − 1).

Let us introduce the proto-delay process

D(λ)
i = dTk(o, X

(λ)
i )− `λ.

Proposition 6.1 (Delays on trees). As λ → 0 with ξλ = ξ ∈ [1, k − 1) fixed, the proto-delay

process (D(λ)
i ; i ≥ 1) converges in law towards a Poisson process on R with intensity

ξ · (k − 1)m over the interval [m,m+ 1) for m ∈ Z.

Proof. For λ > 0 fixed, notice that the total intensity of the points falling in edges at distance

p ≥ 0 (i.e., whose closest point is at distance p) from the origin is equal to kλ(k − 1)p. Write then

p = `λ +m to see that for m fixed, as λ → 0 with ξλ fixed, this intensity converges to ξ(k − 1)m,

which concludes the proof.

The convergence to points on the boundary is trivial in this case. Recall that the Gromov

boundary ∂Tk of the k-regular tree can be identified with the space of all infinite rays starting from

the origin equipped with the natural local topology. It has a natural uniform measure. Given this,

and the obvious fact that conditionally on their distances to the origin, the points of X(λ) are i.i.d.

on the spheres prescribed by their distances, it follows that they converge towards i.i.d. uniform

points on ∂Tk. As in Section 3.2, one can check that the ideal diagrams are a.s. nondegenerate

(since the delays are a.s. distinct), and we deduce the convergence of the Voronoi tessellations when

λ→ 0 with ξλ fixed. In other words, we have a one-parameter family of ideal tessellations Iξ on Tk
parametrized by ξ ∈ [1, k − 1) obtained as limit of Poisson–Voronoi tessellations on Tk. Although

those ideal tessellations are indeed pairwise different, here is a surprising fact:

Theorem 6.2 ([Bhu19]). The restriction of Iξ to the vertices of Tk has the same law for all

ξ ∈ [1, k − 1).
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To be more precise, [Bhu19] did not work with our model, but, rather, with the discrete Bernoulli–

Voronoi tessellations solely on the vertices of Tk, where each vertex is independently a nucleus with

probability p ∈ (0, 1). In addition, to break ties in distance, each nucleus is given an independent,

uniform [0, 1] random label, so that a vertex belongs to the closest nucleus with the smallest label.

To see the relationship between these two processes in the limit, let E(Tk) be the union of real

segments corresponding to the edges and V (Tk) be the vertices. Define f : E(Tk)→ V (Tk)× [0, 1]

by f(x) := (v, `), where v is the endpoint closest to o of the edge containing x and ` is the distance

from x to v. Let Y(λ) be obtained from
{
f(x) ; x ∈ X(λ)

}
by keeping only those f(x) with smallest

second coordinate when there is more than one pair having the same first coordinate. The first

coordinates of Y(λ) restricted to V (Tk) \ {o} form a Bernoulli(p)-process with p := 1− e−λ, while

the second coordinates are i.i.d., continuous random variables. Fix a finite-radius ball B of Tk about

o. Provided no vertices of Y(λ) lie in V (B), the partition on V (B) induced by X(λ) equals the

partition on V (B) induced by Y(λ). When λ and thus p are small, this proviso holds with high

probability. Hence, if the limit exists of low-intensity Bernoulli–Voronoi tessellations on Tk, then so

does the limit of the restriction to V (Tk) of the Poisson–Voronoi tessellations.

[Bhu19] proved the existence of the limit of low-intensity Bernoulli–Voronoi tessellations on

regular trees by explicitly calculating the probabilities of all elementary cylinder events, showing

that they are polynomials in p. For example, [Bhu19, Lemma 2.5] shows that the degree of the root

equals j ∈ [1, k] with limiting probability

1

(k − 2)(j − 1) + 1
· 1∏k−1

i=j (1 + 1
i(k−2))

.

It is unclear whether there are any Cayley graphs other than trees where there is a unique low-intensity

limit of Bernoulli–Voronoi tessellations, except when the limit is trivial; see [Bhu19].

The following proposition is the analogue of the corresponding result, Proposition 3.9, for Hd.

Proposition 6.3 (One end on trees). For each ξ ∈ [1, k − 1), a.s. no cell in the IPVT Iξ on Tk
contains a biinfinite geodesic.

Proof. Let the delays be (Di ; i ≥ 1) in increasing order corresponding to the ideal boundary points

Θi. By Proposition 6.1, we have P
[
D1 < −n

]
= O

(
(k−1)−n

)
as n→∞ and P

[
D1 ≥ n

]
≤ e−ξ(k−1)n−1

.

For any vertex x, let Dxi := dΘi(x) + Di be the separation of (Θi,Di) from x. Then miniDxi has the

same distribution as D1 by automorphism invariance. Let S′2n be the set of vertices x such that the

geodesic from x to Θ1 contains the geodesic from o to Θ1 as well as precisely 2n additional edges.

For x ∈ S′2n, we have Dx1 = D1 + 2n. Also, any such x belongs to the cell of o iff Dx1 = miniDxi . Let

An be the event that some x ∈ S′2n belongs to the cell of o. Let S2n be the sphere of radius 2n about

o, which has cardinality k(k − 1)2n−1. Then

P(An) ≤ P
[
D1 < −n

]
+ P

[
∃x ∈ S′2n D1 ≥ −n, Dx1 < Dxi for all i > 1

]
≤ P

[
D1 < −n

]
+ P

[
∃x ∈ S′2n min

i
Dxi ≥ n

]
≤ P

[
D1 < −n

]
+ P

[
∃x ∈ S2n min

i
Dxi ≥ n

]
≤ O

(
(k − 1)−n

)
+ k(k − 1)2n−1e−ξ(k−1)n−1 → 0 as n→∞,

where the last inequality follows from the second sentence of the proof.
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It follows that P
(⋂

nAn
)

= 0, in other words, o does not belong to a biinfinite geodesic in the

cell of o a.s. Since Iξ is invariant under all automorphisms of Tk, the same holds for every vertex in

place of o, whence all cells have only one end a.s.

We use this result to prove our assertion that Iξ is different for different ξ ∈ [1, k − 1):

Proposition 6.4. There is a measurable function f on tessellations of Tk such that for each

ξ ∈ [1, k − 1), we have f(Iξ) = ξ a.s.

Proof. Let V be a tessellation. Define f to be 0 if some cell of V does not have a unique end. If

each cell has a unique end, then let θ1 be the end of the cell of o. Set g(θ1) := 0. There is a unique

extension of g to the set E of ends of all cells such that when two cells with ends θ and θ′ share a

boundary point x, we have g(θ) + dθ(x) = g(θ′) + dθ′(x). When V is the tessellation corresponding

to ideal nuclei (Θi,Di), we have that g(Θi) = Di − D1 a.s. Define G(t) := |{θ ∈ E ; g(θ) ≤ t}| for

t ≥ 0. Finally, let

f(V ) := lim sup
t→∞

∫ 1

0

G(t+ s)

(k − 1)t+s
ds
/ ∫ 1

0

s+ 1/(k − 2)

(k − 1)s
ds.

In order to show that f(Iξ) = ξ a.s., consider the Poisson process on R described in Proposition 6.1,

and denote by N(t) the number of its points at most t for t ∈ R. Now limt→∞N(t)/E
[
N(t)

]
= 1

a.s. with

E
[
N(t)

]
= ξ
( ∑
m<btc

(k − 1)m + (k − 1)btc
(
t− btc

))
= ξ
(

(k − 1)btc
(
t− btc+

1

k − 2

))
,

whence
N(t)

(k − 1)t
∼ ξ t− btc+ 1/(k − 2)

(k − 1)t−btc
a.s. as t→∞.

At every sample where this holds, we obtain

lim
t→∞

∫ 1

0

N(t+ s)

(k − 1)t+s
ds = ξ

∫ 1

0

s+ 1/(k − 2)

(k − 1)s
ds.

On the other hand, G(t) = N(t+ D1) when V = Iξ, which proves that f(Iξ) = ξ a.s.

Similarly to the last part of the proof of Theorem 3.11, one can extend this argument to prove

that for each ξ ∈ [1, k − 1), there is an isomorphism between the Poisson process on R described in

Proposition 6.1 and the IPVT on Tk that is equivariant with respect to all automorphisms of Tk.

7 Future directions

Many interesting questions remain, of which we present a few. We have not given substantial thought

to all of them.

Question 7.1 (Other manifolds). The recent paper [FMW23] uses ideal Poisson–Voronoi diagrams

defined directly on a generalization of the corona, similarly to Definition 2.1, to establish some

results in geometric group theory.5 They do not establish whether such diagrams are limits of

5Their work was independent of ours. They were inspired by [BCP22] and were unaware of [Bhu19].
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Poisson–Voronoi diagrams. For which homogeneous Riemannian manifolds does the limit exist of

Poisson–Voronoi diagrams as the intensity of the process of nuclei tends to 0? For example, does it

exist on the Riemannian product H2 × R?

Question 7.2 (Equivariant injectivity). Theorem 3.11 shows that certain equivariant maps are

injective a.s. Is the map that sends an IPVT to the set of its vertices a.s. injective? Is the map that

sends an IPVT to its IPDT a.s. injective?

Question 7.3 (Typical neighboring vertices). What is the joint distribution of the neighboring

vertices of a typical vertex?

Question 7.4 (Face intensities and hole probabilities). What are the values for the integral

face intensities, Ĩd,k for 1 ≤ k ≤ d− 2? Related to this: what are the hole probabilities for k-faces

with 0 ≤ k ≤ d− 2?

Conjecture 7.5 (Boundary hole probabilities). Regarding Proposition 5.1, we believe that

P[Bu(o) ⊂ Cd]e(d−1)u is decreasing in u. In fact, for odd d, we believe that P[Bu(o) ⊂ Cd] equals

e−(d−1)u/p(e2u), where p is a polynomial of degree (d− 1)/2 with positive, rational coefficients. For

even d, we believe that P[Bu(o) ⊂ Cd] equals e−(d−1)u/f(u), where f is an infinite power series with

positive coefficients that are rational linear combinations of 1 and 1/π. The median distance from o

to ∂Vd is likely less than the mean for every d, because the density of the distance is likely decreasing.

Question 7.6 (Typical values and the typical cell). We noted that Rd−1-typical values for

the Möbd-typical ideal cell Td match Möbd-typical values for Vd in Remarks 5.8, 5.10, 5.11 and 5.13.

Is there a general theorem to this effect?

Question 7.7 (Variance of the volume of the typical cell). Let Vd(λ) be the variance of the

volume of the typical cell of V(λ)
d . Does λVd(λ) have a finite limit as λ → 0? In fact, is the limit

equal to the expected volume of Cd \ Td(R1) in their natural coupling? If so, what is this value? This

is plausible because λVd(λ) is the difference between the expected volumes of the size-biased typical

cell (i.e., the zero cell) and the typical cell.

Question 7.8 (Indistinguishability). All cells of Vd share the same asymptotics, which are those

of the typical cell. Are they, in fact, indistinguishable? This would mean that for every measurable

set A of pairs (C, V ), where C is a cell of a tessellation V of Hd, if A is invariant under the diagonal

action of Möbd, then a.s., for all cells C ∈ Vd, we have (C,Vd) ∈ A or, for all cells C ∈ Vd, we have

(C,Vd) /∈ A. Since the IPVT is Möbd-ergodic, this is equivalent to P
[
(Cd,Vd) ∈ A

]
∈ {0, 1}. Because

of Theorem 3.11, indistinguishability is equivalent to the nonexistence of a proper factor of the PPP

X on the corona, in other words, the nonexistence of an equivariant map f on discrete subsets of

∂̃Hd such that ∅ 6= f(X) ( X a.s. The concept of indistinguishability is important in percolation

theory [LS99] and in measured group theory [GL09].

Question 7.9 (Exceptional rays). Consider rays in the 1-skeleton of V2, i.e., in the 3-regular tree

embedded in H2. Those rays that eventually stay in the boundary of some cell satisfy common strong

laws of large numbers due to the ergodicity of the typical cell, T2. What about other rays? For

example, if s(v) denotes the separation of a vertex v from its closest ideal nucleus and if (vn ; n ≥ 1) is

a ray of vertices that is eventually in the boundary of some cell, then limn→∞ n
−1
∑n

k=1 s(vk) = 3 a.s.

by Proposition 4.4 and the ergodic theorem. Those that do not satisfy this property are exceptional.

By ergodicity of V2, the existence of exceptional rays has probability 0 or 1 and the set of exceptional
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rays has an a.s. constant Hausdorff dimension (see, e.g., [LP16, Section 1.8] for Hausdorff dimension

in trees). What is that constant?
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