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Résumé

Dans ce rapport, nous avons étudié le problème d’assignation lorsque deux ensembles de points ayant le
même nombre sont distribués aléatoirement. L’objectif est de trouver l’assignation optimal, c’est-à-dire
l’assignation avec le coût total minimum, qui est basé sur les hypothèses spécifiques du problème, et nous
souhaitons étudier ses propriétés statistiques. Les hypothèses du problème comprennent la définition de
la fonction de coût d’assignation, les domaines sur lesquels les deux ensembles de points sont distribués,
la loi de distribution des points et le nombre de points. Ce problème de mécanique statistique, appelé
“problème d’assignation aléatoire Euclidien” [1], est lié aux travaux de Mézard et Parisi dans les années
1980 sur les modèles mathématiques des verres de spin [2, 3].

Dans la première section, nous avons introduit plusieurs problèmes spécifiques d’intérêt, qui se dis-
tinguent de ceux déjà étudiés par l’une des hypothèses, c’est-à-dire les domaines, notés (Ωb, Ωr). Les
domaines que nous avons considérés sont des domaines glués unidimensionnels, par exemple les graphes
en étoile, et certains domaines convexes bidimensionnels, par exemple les ellipses et les triangles. Nous
avons ensuite résumé notre étude de ces problèmes en étudiant l’effet du changement du domaine sur
l’assignation optimale. Plus précisément, en se basant sur le cas Ωb = Ωr, nous étudions deux types
de changements, tout d’abord, le changement du domaine de distribution d’un seul ensemble de points,
c’est-à-dire en comparant un problème sur (Ω,Ω) et un sur (Ω,Ω′), et deuxièmement, en changeant les
deux domaines de la même manière, c’est-à-dire en comparant un problème sur (Ω,Ω), et un sur (Ω′,Ω′).

Dans Section 2, nous avons passé en revue certains résultats existants sur les problèmes de dimension
basse qui sont utiles pour notre étude. Dans Section 3, nous avons fourni un théorème permettant de
comparer le coût total minimum de deux problèmes d’assignation aléatoire euclidiens différents avec
le même nombre de points, en utilisant l’ordre stochastique des coûts d’une des paires dans ces deux
problèmes. Ce théorème peut être utilisé pour comparer un problème sur (Ω1, Ω2) et un autre sur (Ω3,
Ω4), qui comprend les deux cas mentionnés précédemment.

La section suivante, basée sur les problèmes introduits dans Section 1, présente deux applications du
théorème, y compris des études du problème sur le graphe en k-étoile unidimensionnel et des comparaisons
entre certains problèmes en dimensions supérieures. Dans la dernière section, nous avons discuté des
limitations et d’autres applications possibles du théorème, et présenté quelques conjectures.

Mots-clés

Problème d’assignation aléatoire euclidienne, Ordre stochastique, Graphe en étoile, Domaine convexe
bidimensionnel, Simulation numérique en Python
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Abstract

In this report, we studied the one-to-one matching problem when two sets of points with the same number
are randomly distributed. The aim was to find the optimal match, i.e. the match with the minimum
total cost, which is based on the specific assumptions of the problem, and we wanted to investigate
its statistical properties. The assumptions of the problem include the definition of a cost function, the
domains (denoted as Ωb and Ωr) over which the two sets of points are distributed, the distribution law
of the points, and the number of points. This statistical mechanics problem, called “Euclidean Random
Assignment Problem” [1], is related to the work of Mézard and Parisi in the 1980s on mathematical
models of spin glasses [2, 3].

In the first section, we introduced several specific problems of interest, which are distinguished from
those already studied by one of the assumptions, i.e. Ωb and Ωr. The domains we considered are one-
dimensional glued domains, e.g. star graph, and some two-dimensional convex domains, e.g. ellipses and
triangles. We then summarized our study of these problems as studying the effect of changing domains
on the optimal match. Specifically, based on the Ωb = Ωr case, we study two kinds of changes, firstly,
changing the distribution range of only one point set, i.e. comparing a problem on (Ω,Ω) and one on
(Ω,Ω′), and secondly, changing both domains in the same way, i.e. comparing a problem on (Ω,Ω) and
one on (Ω′,Ω′).

We reviewed in Section 2 some existing findings on low-dimensional problems which are useful for
our study. In Section 3, we provided a theorem to compare the minimum total cost of two different
Euclidean Random Assignment Problems with the same number of points, using the stochastic order of
the costs of one of the pairs in these two problems. This theorem can be used to compare a problem on
(Ω1,Ω2) and one on (Ω3,Ω4), which includes the two cases mentioned earlier.

The subsequent section, based on the problems introduced in Section 1, provide two applications of the
theorem, including studies of the problem on the one-dimensional k-star graph and comparisons between
some problems in higher dimensions. In the final section of this report, we discussed the limitations and
more possible applications of the theorem, and presented some conjectures.

Keywords

Euclidean Random Assignment Problem, Stochastic order, Star graph, Two-dimensional convex domain,
Numerical simulation in Python
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1 Introduction

Suppose that there are 5 mines mining iron ore in city A and 5 factories in city B that use the iron
ore produced by the mines. The transport cost from a mine to a factory is determined by the distance
between these two sites. In addition, each mine can only supply one factory. We want to find the optimal
transport plan that minimises the total transport cost of the 5 transport routes [4].

We notice that the solutions in this problem are countable (and the number of them is equal to
120), that is, if all the possibilities are shown, the optimal solution can be found. There are many
other problems having this characteristic, and they are known generally as combinatorial optimization
problems [5]. Some of them, like traveling salesman problem (TSP) [6], job-shop scheduling problem
(JSSP) [7], Bin Packing Problem (BPP) [8, chapter 18] and K-satisfiability (K-SAT) [9], have long been
questions of great interest in a wide range of fields.

The problem introduced at the beginning is an example of the assignment problem [10], a classical type
of combinatorial optimisation problem. The assignment problem has received increased attention across
a number of disciplines in recent years, like in education [11], transportation [12], and healthcare [13].
Our work focuses on a type of this problem in which objects are random points: the Euclidean Random
Assignment Problem (ERAP) [1].

1.1 Euclidean Random Assignment Problem

Consider an n-sample B = (B1, . . . , Bn) of i.i.d. random variables of law µB over the defined domain
Ωb, and another n-sample R = (R1, . . . , Rn) of i.i.d. r.v.s of law µR over Ωr. We are interested in the
statistical properties, the random variable

HΩb,Ωr

opt := min
π∈Sn

n∑
i=1

Dp(Bi, Rπ(i)) , (1)

where Sn is the symmetric group over n elements, and D(B1, R1) is the Euclidean distance between

points B1 and R1. In some cases, we use the notation HΩb,Ωr,n
opt to stress the dependence on n. However,

without causing any misunderstanding, we will also abbreviate it to Hopt.
For a specific case of ERAP, we specify some assumptions. First, the domain Ωb and Ωr in which the

points are distributed. The most easily studied scenarios are those on one dimension. We will review some
research results in the different dimensions in Section 2. The widely studied supposition is that Ωb = Ωr,
but in this work we also discuss the case of Ωb ̸= Ωr. Second, the law µB , µR for random variables.
Typically, the random variables follow the continuous uniform distribution, but other situations have
also attracted attention, such as where a point set B is a deterministic grid on the domain [14]. Third,
the exponent p. Depending on the value of p, and especially on the three groups: p > 1, 0 < p < 1,
p < 0, the optimal assignment will show different properties. The previous findings in different cases will
also be recalled in Section 2. Last, the number of points (n). In addition to studies relating to specific
n, the value E[Hopt] as n tends to infinity is also worth being studied, as it can help us understand the
relationship between the ERAP and its continuous counterpart, the Monge-Kantorovich [15].

ERAP can be used in statistical physics as a toy model for the study of “spin-glass” [2,3]. The indi-
vidual atomic bonds in a spin glass consist of almost equal numbers of two types of bonds (ferromagnetic
bonds and antiferromagnetic bonds), which can be represented by B and R. The main focus is on the
typical properties of systems made up of these particles in the limit of low temperature, i.e. the lowest
energy state, as denoted by Hopt.

1.2 Contributions of the work

Some of our work developed into a short paper [16], in which we prove Theorem 1 to compare E[HΩ1,Ω2

opt ]

and E[HΩ3,Ω4

opt ] by using stochastic order of c(B
(Ω1)
1 , R

(Ω2)
1 ) and c(B

(Ω3)
1 , R

(Ω4)
1 ), i.e., the cost functions

of a single couple (B1, R1) without the assignment constraint. As mentioned in the former part, this
theorem also applies to the case of Ωb ̸= Ωr. In [16], we then used the theorem to discuss some special
structures. Our interest in these structures will be introduced at the end of this section. More detailed
proofs and additional comments will be given in this report. All python code used to visualise specific
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problems in this report is publicly available1.

1.3 Motivation and structure of the report

It is following numerical experiments on ERAPs that has driven this research. Firstly, for two-dimensional
problems, the impact of the shape of the domains on the total cost has attracted attention. An example
is shown in Figure 1.1-1.3, that is, if other assumptions are the same and Ωb = Ωr := Ω are disc, square,
and triangle respectively, we might be able to compare the E[Hopt] corresponding to each figure.

Figure 1.1: Ω: disc, n = 100 Figure 1.2: Ω: square, n = 100 Figure 1.3: Ω: triangle, n = 100

Similarly, another example is, when we consider that Ω are ellipses of the same area but different
shapes, whether the value of E[Hopt] depends on the shape (see Figure 1.4).

Figure 1.4: Ω: ellipses of the same area but different shapes, n = 100

In addition, Numerical experiments on the ERAP with glued domains have also driven our work. In
this report, we mainly discuss one-dimensional problem with glued domains. Two-dimensional problem
with glued domains are defined similarly, but the applications are more challenging, and we will also
discuss them shortly in Section 5.

For one-dimensional problems, a great deal of previous research into ERAP has focused on the case
where Ωb and Ωr are line segments (see Figure 1.5(a)). Based on this simple structure, the glued domains
are star graphs, as exemplified by Figure 1.5(b-d). There are practical application scenarios for such
structure. For example for the problem at the beginning of this report, it corresponds to the case where
the factories and the mines are located on different roads with (one or more) crossings. This leads
naturally to the definition of distance, where transport between two points on different sides needs to
pass through the crossing points. We will present detailed definition in Section 4.1.3.

We note that for the star graph defined here, the number of sides and the number of vertices can
be arbitrary positive integers and the length of each side can be different. Similar to this structure, we

1https://github.com/matteodachille/ERAPs2d/tree/Visualisation-examples-from-Yuqi’s-M2-report
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can define wormholes on line segment. As shown in Figure 1.6(a), the transport distance between the
red point and the blue point is the sum of the lengths of the two grey line segments (l1 + l2). In other
words, wormholes t1 and t2 can reduce the transport distance between points. An equivalent structure to
Figure 1.6(a) is Figure 1.6(b), which contains a closure of the ring rather than two wormholes. That is,
the distance between the same red point and blue point can be represented by l. We mention this because
there have been studies of ERAP on a circle [17] (see Figure 1.6(d)), and particularly, this equates to
the wormholes being at exactly the two end points of the line segment (see Figure 1.6(c)).

There are two ideas that can help us examine these problems mentioned earlier. Firstly, contrast the
problem on a star graphs (e.g. Figure 1.5(b)) with the problem on a line segment (e.g. Figure 1.5(a)).
Secondly, Hopt on the star graph is mainly related to the transport costs on each side. A detailed
explanation can be found in [18]. However, due to the fact that the number of red points on each branch
may not equal the number of blue points, this sub-problem differs from the one shown in Figure 1.5(a):
for the former, Ωb = Ωr; for the latter, Ωb ̸= Ωr. We will discuss this in Section 4.1.2.

(a) (b) (c) (d)

Figure 1.5: Star graphs

t1t20 1

l1 l2

(a)

l

(b)

0 1

(c) (d) (e)

Figure 1.6: Glued domains

Let us now turn to the two-dimensional problem with glued domains. We can also call this problem
ERAP on 2-dimensional domain with barriers.

Let B and R be i.i.d. random variables over
⋃

1⩽j⩽k

Ωi, and Ω1,Ω2, ...Ωk be k convex sets in two-

dimensional Euclidean space, identical in shape, of equal areas A(Ωj) = 1
k , j = 1, . . . , k, and sharing

exactly one point w which for the sake of definitiveness we take to be (0, 0). The distance between two
points, a = (xa, ya) and b = (xb, yb), in

⋃
1⩽j⩽k

Ωi is defined by

D(a, b) =


√
(xa − xb)2 + (ya − yb)2, if a, b ∈ Ωj , j = 1, . . . , k√

x2
a + y2a +

√
x2
b + y2b , otherwise.

Figure 1.6(e) shows an example where the grey line segments indicate the transport path with the shortest
distance.

For the two ideas presented earlier for studying one-dimensional problems with glued domains, the
first one, i.e. directly comparing the problem on a glued domain with the problem on a convex domain,
is difficult. So we discuss the second idea here.

Once the solution π∗ is found, we consider a part of connections appearing in the optimal matching:

S1 = {(bi, rπ∗(i)) : the blue point bi and the red point rπ∗(i) are in Ω1},

7



The assumptions of this sub-problem can be described in another way: B is an n-samples of i.i.d. random
variables over a domain Ω, |Ω| = 1, and R is another n-samples of i.i.d. random variables over the domain
Ω′ ⊂ Ω, |Ω \ Ω′| = 1√

n
. Specifically, we would likely consider three cases:

1. Ω = [0, 1]2 and Ω′ = [0, 1]× [0, 1− 1√
n
]. (See Figure B.1)

2. Ω = B(0, 1√
π
) and Ω′ = B(0, 1√

π

√
1− 1√

n
). (See Figure B.2)

3. Ω = B(0, 1√
π
) and Ω′ = B(0, 1√

π
) \B(0, n−1/4

√
π

). (See Figure B.3)

The third case is the one most relevant to the two-dimensional problem with glued domains, because
in optimal matching, red (blue) points close to the center are more likely to be connected to blue (red)
points in different divisions.

In summary, the problems we are interested in can be divided into two types. That is, setting
Ωb = Ωr = Ω ̸= Ω′, we study the effects of change of domain on E[HΩ,Ω

opt ] in the following two cases,

1. Both domains are changed to the same one, i.e., compare E[HΩ,Ω
opt ] and E[HΩ′,Ω′

opt ].

2. There is only one domain changed, i.e., compare E[HΩ,Ω
opt ] and E[HΩ,Ω′

opt ].

This report is divided into six distinct sections. The second section gives a brief review of the ERAPs,
including the conclusions in the one-dimensional and two-dimensional problems and the connection
between ERAPs and Monge-Kantorovich problem. The third section summarises the main finding of our
work. We will prove an inequality which is valid for a more general case than the two types of problem
above. Some applications of the finding are discussed in Section 4, with regard to the cases presented
earlier. We have not resolved all the problems mentioned earlier in this report. In the final section, we
will present some ideas as perspectives for future research.
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2 Literature review

Since the work of Mézard and Parisi [2, 3] that used the random assignment problem as a model to
study spin glasses, a number of studies have begun to examine the statistical properties under different
assumptions [4, 14,17,19–32].

In this section, we review previous work in various dimensions of domain. Before that, let us review
a thought which is useful when we discuss universality in the ERAP. A discrete counterpart to the
Monge-Kantorovich problem is the ERAP. And we remark that

lim
n→+∞

1

n
E
[
HΩb,Ωr

opt

]
= W p

p (ρB, ρR) ,

where ρB, ρR are the empirical measures of B and R and W p
p (µ, ν) is the p-th power of the Wasserstein

distance Wp among probability measures µ, ν (for the relevant definitions, see e.g. [33]).

2.1 1-dimensional Euclidean Random Assignment Problems

To date, several studies (e.g. [14, 17, 19]) have investigated the case of the distribution of points on a
line segment or on a circle, with p ⩾ 1. In the case of a line segment, for a convex cost function, the
optimal matching has a very clear construction, that is, ordering the red and blue points respectively
according to their distance from one of the endpoints of the line segment, the i-th red point match the
i-th blue point (for all 1 ⩽ i ⩽ n). An example is illustrated in Figure 2.1 (a). This finding has allowed
for further research into the minimum total cost Hopt. A similar conclusion holds true when the points
are distributed on a circle (for example, see Figure 2.1 (b)). There are also studies on p < 0 or 0 < p ⩽ 1,
e.g. [4,20], and these cases are more challenging than the problem with convex cost functions. In the rest
of this report, we only discuss the case of convex cost functions. More reviews of studies corresponding
to other cost functions can be found in [1]. For another item in the hypothesis, namely the distribution
of points, some problems of non-uniform distribution have also been studied [21–24].

(a) (b)

Figure 2.1: Examples of one-dimensional ERAP.

2.2 2-dimensional Euclidean Random Assignment Problems

Compared to one-dimensional problems, two-dimensional problems are more extensively studied, and one
reason for this is that there are more classical two-dimensional domains that have attracted attention.
Benedetto et al. (2021) [25] studied the problem on various families of surfaces, including unit rectangle,
flat torus, disc, cone, unit sphere and real projective sphere. On these surfaces, if p = 2, we have the
following fundamental result,

lim
n→+∞

E
[
HΩ,Ω

opt

]
≃ |Ω|

2π
log n+ o(log n) (2)

Here, |Ω| means the area of Ω and “≃” means the asymptotic equivalence. This result was presented
in [34] in a more generalized form,

lim
n→+∞

E
[
HΩ,Ω

opt

]
≃ cpn

1− p
2 (log n)

p
2 (1 + o(1)) , p ⩾ 1 . (3)

Then, it is only since the work of Caracciolo et al. (2014) [26], in which they proposed a linearisation
ansatz of the Monge-Ampère equation to the Poisson equation, that research into the proof of this
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conclusion has gained momentum. Now, eq.(2) has been proved in [27,28] via PDE methods to hold for
any compact 2-dimensional Riemannian manifold without boundary. More recently, there has been an
increasing amount of literature on PDE methods for studying this 2d problem [29–31].

In all the studies reviewed here for eq.(2), little is known about anything except the leading-order
term. In [25], the authors have begun to examine the sub-leading-order term on each surface.

In addition to these low-dimensional cases, a number of authors have considered the case in dimension
⩾ 3, for example Talagrand (1994) [32].
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3 Basic definitions and main result

Stochastic dominance [35, 36] is useful in a variety of probability theory fields, including stochastic
processes [37, Section 9], discrete probability distributions [38], and decision theory [39]. In this section,
we first review some basic definitions and properties of stochastic dominance, in particular about the
stochastic order of random variables, then using them to present our main theorem.

3.1 Stochastic order of random variables

Definition 1. [First-degree and Second-degree stochastic dominance]
Two random variables X and Y are in stochastic order, specifically, X is said to be first-degree

stochastically dominant over Y , written Y ≤st X, if

P(X ⩾ t) ⩾ P(Y ⩾ t), ∀t ∈ R . (4)

X is said to be second-degree stochastically dominant over Y , i.e. Y ≤ssd X, if and only if∫ u

−∞
P(X ⩽ t)dt ⩽

∫ u

−∞
P(Y ⩽ t)dt, ∀u ∈ R. (5)

Proposition 1. There are some other ways to rewrite eq.(4):

1. FX(t) ⩽ FY (t), ∀t ∈ R, where FX(t) and FY (t) are the cumulative distribution functions;

2. P(X ∈ T ) ⩾ P(Y ∈ T ),∀T ⊂ R, where T is an open set, or T is a half-open set including only the
right endpoints;

3. E[IT (X)] ⩾ E[IT (Y )],∀T ⊂ R, where IT means the indicator function of T , and T is an open set,
or T is a half-open set including only the right endpoints;

4. E[ϕ(X)] ⩾ E[ϕ(Y )], for all increasing functions ϕ for which the expectations exist;

5.
∫∞
u

P(X > t)dt−
∫∞
u

P(Y > t)dt is decreasing in u ∈ (−∞,∞).

3.2 Main theorem

The following theorem is the main result of our work, that is, using stochastic order to compare different
Euclidean Random Assignment Problems.

Theorem 1. Let Ω1,Ω2,Ω3,Ω4 be four domains. B(Ω1) are n i.i.d. r.v.s over Ω1. Analogously, R(Ω2),
B(Ω3) and R(Ω4) are respectively n i.i.d. r.v.s over Ω2,Ω3, and Ω4 (see Figure 3.1-3.2). Consider the cost
function defined by

c : Ω1 × Ω2 ∪ Ω3 × Ω4 → R+

(x, y) 7→ c(x, y),

and let Fc(x,y)(t) be its cumulative distribution function. Assume that, if we take arbitrary points, one

in each set B(Ω1), R(Ω2), B(Ω3) and R(Ω4), and denote them separately as B(Ω1), R(Ω2), B(Ω3) and R(Ω4)

(see Figure 3.3-3.4), then the following inequality holds

c
(
B(Ω3), R(Ω4)

)
≤st c

(
B(Ω1), R(Ω2)

)
. (6)

Then
E[HΩ3,Ω4,n

opt ] ⩽ E[HΩ1,Ω2,n
opt ], ∀n ⩾ 1. (7)

Remark 1.

(i) We now present the sketch of the proof, which is detailed in the Appendix A.1. Eq.(6) leads to

n∑
i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) ) ≤st

n∑
i=1

c(B
(Ω1)
i , R

(Ω2)
π′(i)),∀π, π

′ ∈ Sn, (8)
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Ω1

Ω2

Figure 3.1: B(Ω1) ⊂ Ω1,R(Ω2) ⊂ Ω2

Ω3

Ω4

Figure 3.2: B(Ω3) ⊂ Ω3,R(Ω4) ⊂ Ω4

Ω1

Ω2

c
(
B(Ω1), R(Ω2)

)

Figure 3.3: B(Ω1) ∈ Ω1, R
(Ω2) ∈ Ω2

Ω3

Ω4

c
(
B(Ω3), R(Ω4)

)

Figure 3.4: B(Ω3) ∈ Ω3, R
(Ω4) ∈ Ω4

then,

min

{
n∑

i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) ),∀π ∈ Sn

}
≤st min

{
n∑

i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) ),∀π ∈ Sn

}
. (9)

Hence,

E

[
min
π∈Sn

n∑
i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) )

]
⩾ E

[
min
π∈Sn

n∑
i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) )

]
, ∀n ⩾ 1, (10)

So we obtain eq.(7).

(ii) The domains Ω1,Ω2,Ω3,Ω4 in the hypothesis are generalised, that means, for instance, the bound-
aries could be less than regular or the domains could be not bounded, as eq.(6) is a very strong
assumption. This theorem holds even if the cost function c(x, y) can be equal to +∞.

(iii) If neither c
(
B(Ω1), R(Ω2)

)
nor c

(
B(Ω3), R(Ω4)

)
stochastically dominates the other, then the direction

of the inequality in eq.(7) generally depends on n. We illustrate in section 4.1.3 a one-dimensional
example.

(iv) Even if Ω1 = Ω3 and Ω2 = Ω4, it is possible that c
(
B(Ω1), R(Ω2)

)
is not equal to c

(
B(Ω3), R(Ω4)

)
by

definition of the cost function c(x, y). For instance, one can set c
(
B(Ω1), R(Ω2)

)
= D2

(
B(Ω3), R(Ω4)

)
and c

(
B(Ω3), R(Ω4)

)
= D4

(
B(Ω3), R(Ω4)

)
.

(v) Theorem 1 holds for any choice of distribution of points (as long as Bi(Ri) ⊥⊥ Bj(Rj), i ̸= j,
i, j = 1, . . . , n).

(vi) As in the case of Remark 3 (iii) as an example, if we have equality

Fc(B(Ω3),R(Ω4))(t) = Fc(B(Ω1),R(Ω2))(t), ∀t ⩾ 0,

then we get equality among all moments

E
[(

HΩ1,Ω2,n
opt

)m]
= E

[(
HΩ3,Ω4,n

opt

)m]
, ∀n ⩾ 1, m ∈ N .

Now, we illustrate this theorem using the first example mentioned in Section 1. More examples are
discussed in the next section.

Example 1. From the numerical results, we can obtain that, by letting Ω be a disc, a square or
an equilateral triangle of the same area, D

(
B(Ω), R(Ω)

)
are in stochastic order, in other words, the

FD(B(Ω),R(Ω))(t) obtained decreases sequentially for all t ∈ R (as shown in Figure 3.5), and thus, setting

12



c
(
B(Ω), R(Ω)

)
= D2

(
B(Ω), R(Ω)

)
, the E[HΩ,Ω

opt ] increases sequentially for every n ∈ N∗ (see Figure 3.6).
This corresponds to Theorem 1. Figure 1.1-1.3 illustrate the matching results of one simulation.

Figure 3.5: Cumulative distribution functions of
D
(
B(Ω), R(Ω)

)
with Ω being a disc, a square or

an equilateral triangle of area 1.

Figure 3.6: En[Hopt] as a function of n with SEM
(standard error of the mean) error bars. The er-
rors are too small to be visible. The number of
simulated instances is 1000.
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4 Applications of Theorem 1

We show in this section how Theorem 1 can be used to study more one-dimensional problems and
two-dimensional problems mentioned in Section 1.

4.1 Applications of Theorem 1 in dimension d = 1

Before the applications, our discussion starts with possibly the simplest case, that is, both domains Ωb

and Ωr are line segments. In this part, we assume that B (R) are uniformly distributed unless otherwise
stated.

4.1.1 Ωb and Ωr are line segments: Results valid in general

In dimension d = 1, one can get a lot more information due to the particularly simple combinatorial
properties of the optimal permutation πopt. For example, As we recalled in the previous section, for an
ERAP over an interval, if p ≥ 1, (strict) convexity of the cost function and optimality imply πopt(i) = i,
∀i = 1, . . . , n, if the points are sorted in natural order (see e.g. [1, 17]). More precisely, in the case
Ωr = Ωb = Ω = [0, 1], the reformulation of ERAP in terms of generalized Selberg integrals [40] allows to
write, for p ≥ 1,

E[HΩ,Ω,n
opt ] =

Γ
(
1 + p

2

)
(p+ 1)

n
Γ(n+ 1)

Γ
(
n+ 1 + p

2

) , ∀n ∈ N. (11)

We can thus address (here in the case p = 2 but with minor modifications for generic p ≥ 1, p even)

the evaluation of E[HΩb,Ωr

opt ], which we resume in the following.

Proposition 2. Let Ωb = [0, lb] and Ωr = [0, lr], for lb, lr > 0, and let Ω = [0, 1]. Then, at p = 2,

E[HΩb,Ωr

opt ] =
(
(n+ 1)(l2b + l2r)− (2n+ 1)lblr

)
E[HΩ,Ω

opt ], ∀n ∈ N. (12)

Proof of Proposition 2. Let ρb, ρr be the probability density functions for red and blue points respec-
tively, Rρb

, Rρr the cumulative distribution functions, and R−1
ρb

, R−1
ρr

their inverse functions (usually
called “quantile functions” in Statistics)2. More precisely,

ρb(x) =
1

lb
1(0,lb)(x) ⇒ Rρb

(x) =
x

lb
· 1(0,lb)(x) ⇒ R−1

ρb
(u) = lbu · 1(0,1)(u).

ρr(y) =
1

lr
1(0,lr)(y) ⇒ Rρr

(y) =
y

lr
· 1(0,lr)(y) ⇒ R−1

ρr
(v) = lrv · 1(0,1)(v).

After re-labeling the n points in order of distance from an endpoint, the probability of the k-th point
being in interval [u, u+ du], denoted by Pn,k(u), is

Pn,k(u)du =
n!

(k − 1)!(n− k)!
uk−1(1− u)n−kdu.

Then, for p ⩾ 2 even, we can write

E[HΩb,Ωr

opt ] =

n∑
k=1

∫ 1

0

∫ 1

0

Pn,k(u)Pn,k(v)
∣∣R−1

ρb
(u)−R−1

ρr
(v)
∣∣p dvdu

=

n∑
k=1

p∑
q=0

(
p

q

)∫ 1

0

∫ 1

0

n!uk−1(1− u)n−k

(k − 1)!(n− k)!

n!vk−1(1− v)n−k

(k − 1)!(n− k)!

(
R−1

ρb
(u)
)q (−R−1

ρr
(v)
)p−q

dvdu

=

n∑
k=1

p∑
q=0

(
p

q

)∫ 1

0

∫ 1

0

n!uk−1(1− u)n−k

(k − 1)!(n− k)!

n!vk−1(1− v)n−k

(k − 1)!(n− k)!
(lbu)

q(−lrv)
p−qdvdu

=

n∑
k=1

(
n!

(k − 1)!(n− k)!

)2 p∑
q=0

(
p

q

)
(lb)

q(−lr)
p−q

∫ 1

0

uk−1+q(1− u)n−kdu

∫ 1

0

vk−1+p−q(1− v)n−kdv

2This proof follows the assumptions and ideas of [1, Lemma 2.6.1]’s proof.
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=

n∑
k=1

(
n!

(k − 1)!(n− k)!

)2 p∑
q=0

(
p

q

)
(lb)

q(−lr)
p−q (k − 1 + q)!(n− k)!

(n+ q)!

(k − 1 + p− q)!(n− k)!

(n+ p− q)!

=

n∑
k=1

(
n!

(k − 1)!

)2 p∑
q=0

(
p

q

)
(lb)

q(−lr)
p−q (k − 1 + q)!

(n+ q)!

(k − 1 + p− q)!

(n+ p− q)!
.

At p = 2, it simplifies to

E[HΩb,Ωr

opt ] =

n∑
k=1

(
n!

(k − 1)!

)2 p∑
q=0

(
2

q

)
(lb)

q(−lr)
2−q (k − 1 + q)!

(n+ q)!

(k − 1 + 2− q)!

(n+ 2− q)!

=l2r

∑n
k=1 k(k + 1)

(n+ 1)(n+ 2)
− 2lblr

∑n
k=1 k

2

(n+ 1)(n+ 1)
+ l2b

∑n
k=1 k(k + 1)

(n+ 1)(n+ 2)

=l2r
n(n+ 1)(2n+ 1)

6(n+ 1)(n+ 2)
+ l2r

n(n+ 1)

2(n+ 1)(n+ 2)
− 2lblr

n(n+ 1)(2n+ 1)

6(n+ 1)(n+ 1)

+ l2b
n(n+ 1)(2n+ 1)

6(n+ 1)(n+ 2)
+ l2b

n(n+ 1)

2(n+ 1)(n+ 2)

=
n

3
l2r +

n

3
l2b −

n(2n+ 1)

3(n+ 1)
lblr ,

which is a homogeneous quadratic polynomial of (lb, lr), invariant under lb ↔ lr. Upon recalling the

standard result at p = 2, namely E[HΩ,Ω
opt ] =

1
3

n
n+1 , eq.(12) follows by simple algebra.

4.1.2 If Ωb and Ωr depend on n

Proposition 3. We assume that p = 2. If 0 < lr < lb <
n+1
n lr, then

E[H[0,lr],[0,lr]
opt ] ⩽ E[H[0,lb],[0,lr]

opt ] ⩽ E[H[0,lb],[0,lb]
opt ], ∀n ∈ Z+.

If 0 < n+1
n lr < lb, then

E[H[0,lb],[0,lr]
opt ] ⩾ E[H[0,lb],[0,lb]

opt ] and E[H[0,lb],[0,lr]
opt ] ⩾ E[H[0,lr],[0,lr]

opt ], ∀n ∈ Z+,

Proof of Proposition 3. If lr < lb, then

((n+1)lb −nlr)(lb − lr) ⩾ 0 ⇒ (n+1)l2b − (2n+1)lblr +nl2r ⩾ 0 ⇒ l2r ⩽ (n+1)(l2b + l2r)− (2n+1)lblr.

If lr < lb <
n+1
n lr, then

(nlb − (n+1)lr)(lb − lr) ⩽ 0 ⇒ nl2b − (2n+1)lblr +(n+1)l2r ⩽ 0 ⇒ (n+1)(l2b + l2r)− (2n+1)lblr ⩽ l2b .

If lb ⩾ n+1
n lr, then

(nlb − (n+1)lr)(lb − lr) ⩾ 0 ⇒ nl2b − (2n+1)lblr +(n+1)l2r ⩾ 0 ⇒ (n+1)(l2b + l2r)− (2n+1)lblr ⩾ l2b .

After noting that

E[HΩb,Ωr

opt ] =
(
(n+ 1)(l2b + l2r)− (2n+ 1)lblr

)
E[H[0,1],[0,1]

opt ],

we can finish the proof.

Let us consider in greater detail the homogeneous quadratic polynomial

Pn(lb, lr)
def
=

E[HΩb,Ωr

opt ]

E[HΩ,Ω
opt ]

=
[
(n+ 1)(l2b + l2r)− (2n+ 1)lblr

]
.

Clearly, Pn(1, 1) = Pn(−1,−1) = 1, ∀n ∈ N (and lb = lr = 1 and lb = lr = −1 are the unique
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solutions independent on n), but if one allows lb, lr to depend on n, then the equation Pn(lb, lr) = 1 has
a continuum of non-trivial solutions. Indeed, putting u = lb−lr

2 and v = lb+lr
2 , it is the ellipse

(u, v) ∈ R2 s.t.

(
n+

3

4

)
u2 +

v2

4
= 1 .

By the obvious symmetry in the exchange lb ↔ lr, we can restrict the discussion to the region lb ≥ lr
(i.e. u ≥ 0).

Thus, we have the following

Corollary 1. Let lb = lr +
α
nγ for α ∈ R and γ ∈ R+. We compare E[HΩr,Ωr

opt ] and E[HΩb,Ωr

opt ].

E[HΩb,Ωr

opt ]

E[HΩr,Ωr

opt ]
=
(n+ 1)(l2b + l2r)− (2n+ 1)lblr

l2r

=
(n+ 1)((lr +

α
nγ )

2 + l2r)− (2n+ 1)(lr +
α
nγ )lr

l2r

=1 +
α

nγ

1

lr
+

α2

n2γ

1

l2r
+

α2

n2γ−1

1

l2r

Then, as n → ∞,

E[HΩb,Ωr

opt ]

E[HΩr,Ωr

opt ]
∼

n→∞


α2n1−2γ l−2

r γ < 1
2

1 + α2l−2
r γ = 1

2

1 γ > 1
2

.

We remark in particular that the cases lb = lr + α
nγ and lb = lr − α

nγ give rise to the same result at
leading order as n → ∞.

Corollary 1 is a useful asymptotic statement (in the limit n → ∞) for addressing more intricate
problems, e.g. gluing “one-dimensional” cases (such as the k-star graph in Section 4.3), since it provides
a rule of thumb for understanding at sight the leading behavior of E [Hopt] of the problem (i.e. whether
the scaling is anomalous or bulk, wrt. to the standard nomenclature). We begin by discussing the upper
and lower bounds of the k-star graph in the next part.

4.1.3 On the k-star graph

As an application of Theorem 1, we study now the upper and lower bounds of E[Hopt] for the ERAP on
the k-star graph presented in [18], that is, B and R are uniformly distributed over a tree with k edges of
length 1

k that share a common vertex O′, k ∈ N∗. In this structure, distances are defined by cases, i.e.,

D(B1, R1) =

{
|(D(B1, O

′)−D(R1, O
′)|, if B1 and R1 are on the same edge,

D(B1, O
′) +D(R1, O

′), otherwise.

Proposition 4. Let Ω∗ be 3-star graph and let the cost function be D2(B(Ω∗), R(Ω∗)). Then we have

4n

27(n+ 1)
⩽ E[HΩ∗,Ω∗,n

opt ] ⩽
n

3(n+ 1)
, ∀n ⩾ 1.

Proof. We use Theorem 1 to prove this. We bound the ERAP on Ω∗ above and below using two ERAPs
with the same cost function but defined, respectively, on the line segments:

Ω := Ωb = Ωr = [0, 1], Ω′ := Ωb = Ωr =

[
0,

2

3

]
.

Now we use the results of Section 4.1.1 for domains of the form Ωb = Ωr = [0, l] in the case of the
3-star graph. There are 3 choices of 2 arms among 3 available (see Figure 4.2 (a)-(c)). Once this choice
is made, the blue B(Ω) and the red R(Ω) will fall on some interval of length 2

3 . Notice that case (a), (b)
and (c) are not independent: each one carries a probability 4

9 that that two points are distributed on
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0 1

(α)

1
3

(β)

0 2
3

(γ)

Figure 4.1: (α): Ωb = Ωr = [0, 1], (β): Ωb,Ωr are 3-star graphs, (γ): Ωb = Ωr = [0, 2
3 ].

exactly the bold edges (either on the same edge or not). And with reference to Figure 4.2 (d)-(f), it is
clear that each case has a probability of occurring with 1

3 ·
1
3 = 1

9 . That is, an edge is specified, and both
points are distributed on this edge.

(a) (b) (c) (d) (e) (f)

Figure 4.2: 3-star graphs.

Corresponding to Figure 4.1, the cumulative distribution functions are

(α) : P
(
D
(
B(Ω), R(Ω)

)
⩽ t
)
=


0, ∀t < 0

−t2 + 2t, ∀t ∈ [0, 1]

1, ∀t ⩾ 1

,

(β) : P
(
D
(
B(Ω∗), R(Ω∗)

)
⩽ t
)
= 3× 4

9
P
(
D
(
B(Ω′), R(Ω′)

)
⩽ t
)
− 3× 1

9
P
(
D
(
B(Ω), R(Ω)

)
⩽ t
)

=
4

3
P
(
D
(
B(Ω), R(Ω)

)
⩽

3

2
t

)
− 1

3
P
(
D
(
B(Ω), R(Ω)

)
⩽ 3t

)
, where Ω :=

[
0,

1

3

]
,

and

(γ) : P
(
D
(
B(Ω′), R(Ω′)

)
⩽ t
)
= P

(
D
(
B(Ω), R(Ω)

)
⩽

3

2
t

)
.

Therefore,

D
(
B(Ω′), R(Ω′)

)
≤st D

(
B(Ω∗), R(Ω∗)

)
≤st D

(
B(Ω), R(Ω)

)
,

this means
c
(
B(Ω′), R(Ω′)

)
≤st c

(
B(Ω∗), R(Ω∗)

)
≤st c

(
B(Ω), R(Ω)

)
.

By applying Theorem 1 and Proposition 2,

4n

27(n+ 1)
= E[HΩ′,Ω′,n

opt ] ⩽ E[HΩ∗,Ω∗,n
opt ] ⩽ E[HΩ,Ω,n

opt ] =
n

3(n+ 1)
, ∀n ⩾ 1.

Remark 2. An analogous argument (with minor technical modifications) will give upper and lower
bounds for the ERAP on the k-star graph for general exponent p ≥ 1. The k-star graph also provides
an easy situation for illustrating Remark 1-(ii).

Example 2. By reusing the previous notations and by setting Ω′′ = [0, 2.4
3 ], we have

P
(
D
(
B(Ω′′), R(Ω′′)

)
⩽ t
)
= P

(
D
(
B(Ω), R(Ω)

)
⩽

3

2.4
t

)
.
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One instance can show that neither c
(
B(Ω′′), R(Ω′′)

)
≤st c

(
B(Ω∗), R(Ω∗)

)
nor c

(
B(Ω∗), R(Ω∗)

)
≤st

c
(
B(Ω′′), R(Ω′′)

)
holds:

P
(
D
(
B(Ω′′), R(Ω′′)

)
⩽

2

3

)
= 1 ⩽ P

(
D
(
B(Ω), R(Ω)

)
⩽

2

3

)
,

while,

P
(
D
(
B(Ω′′), R(Ω′′)

)
⩽

1

4

)
=

5.4

10.24
⩽

5.12

10.24
=

1

2
= P

(
D
(
B(Ω), R(Ω)

)
⩽

1

4

)
.

Using Proposition 2 and Proof of Proposition 4, we get for n = 1,

E[HΩ′′,Ω′′

opt ] =
5.76

54
, E[HΩ∗,Ω∗

opt ] = 3× 4

9
E(H[0,2/3],[0,2/3]

opt )− 3× 1

9
E(H[0,1/3],[0,1/3]

opt ) =
5

54
,

and

lim
n→+∞

E[HΩ′′,Ω′′

opt ] =
5.76

27
.

The numerical results in [18] have suggested that

lim
n→+∞

E[HΩ∗,Ω∗

opt ] =
7

27
.

Therefore,

lim
n→+∞

E[HΩ′′,Ω′′

opt ] < lim
n→+∞

E[HΩ∗,Ω∗

opt ], and for n = 1, E[HΩ′′,Ω′′

opt ] > E[HΩ∗,Ω∗

opt ].

4.2 Applications of Theorem 1 in general dimension d ⩾ 2

Theorem 2. Let Ω be a domain with dimension d, and consider one random blue point and one random
red point B1 = (B1,1, . . . , B1,d)

T ∈ Ω, R1 = (R1,1, . . . , R1,d)
T ∈ Ω. We suppose that ∀1 ⩽ i ⩽ d, ∀t ⩾ 0,

P (D (B1,i, R1,i) ⩽ t) = P (D (B1,1, R1,1) ⩽ t). Then the 3 following statements hold:

1. For (λ1, λ2, . . . , λd) ∈ Rd\{0}, consider a diagonal matrix Λ ∈ Md(R) with determinant ±1,

Λ = diag(λ1, λ2, . . . , λd) ,

which acts as a linear map on B1 and R1. Set B′
1 = ΛB1 ∈ Ω′ and R′

1 = ΛR1 ∈ Ω′ for some domain
Ω′. Then ∀p ∈ R+

3, we prove in Section A.2 that D (B1, R1) ≤st D (B′
1, R

′
1) (and hence by strict

monotonicity Dp (B1, R1) ≤st D
p (B′

1, R
′
1), ∀p ∈ R+). Therefore, by Theorem 1,

E[HΩ,Ω
opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1. (13)

2. Let Λ′ and Λ′′ be two diagonal d× d-matrices with determinant ±1,

Λ′ = diag(λ′
1, λ

′
2, . . . , λ

′
d) , Λ′′ = diag(λ′′

1 , λ
′′
2 , . . . , λ

′′
d) ,

which transform the points in Ω into the domain Ω′ and Ω′′, as follows,

R′
1 = Λ′R1 ∈ Ω′, B′

1 = Λ′B1 ∈ Ω′, R′′
1 = Λ′′R1 ∈ Ω′′, B′′

1 = Λ′′B1 ∈ Ω′′.

If Tr (abs(Λ′′)) ⩽ Tr (abs(Λ′)) , where abs(M) := (|Mij |)1≤i,j≤d, then ∀p ∈ R+, Dp (B′′
1 , R

′′
1 ) ≤st

Dp (B′
1, R

′
1) and by Theorem 1,

E[HΩ′′,Ω′′

opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1. (14)

3For p ∈ R−, D
(
B′

1, R
′
1

)
≤st D (B1, R1), ∀t ⩾ 0.
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3. Let M ∈ GLd(R). We assume that M transforms the points in Ω into the domain Ω, thus

MR1 ∈ Ω, MB1 ∈ Ω.

Then ∀p > 0, Dp (B1, R1) ≤st D
p (MB1,MR1) and by Theorem 1,

E[HΩ,Ω
opt ] ⩽ E[HΩ,Ω

opt ], ∀n ⩾ 1.

We now attempt to make Theorem 2 more visible through an example, and to add some comments
on this result. The example is comparing the E[Hopt] in the ellipses with different eccentricities and
equal areas. Unless otherwise specified, we assume in the rest of Section 4.2 that B (R) are uniformly
distributed over Ωb (Ωr), and that the cost function is D2(x, y).

Consider the one-parameter family of ellipses Eλ = {(x, y) ∈ R2, s.t. (λx)2 + ( yλ )
2 ⩽ 1

π , λ ∈ (0, 1]}.
Notice that |Eλ| = 1, ∀λ, and that E1 = B

(
(0, 0), 1√

π

)
is the unit-area 2-ball. The eccentricity of Eλ is

√
1− λ4. Let Hλ

opt be the ground state energy of the ERAP at p = 2 on Eλ, that is

Hλ
opt := min

π∈Sn

n∑
i=1

D2(Bi, Rπ(i)), with Bi, Rj i.i.d. ∼ U (Eλ) rvs, 1 ⩽ i, j ⩽ n.

Remark 3.

(i) In E1, we get

∀1 ⩽ i ⩽ d, ∀t ⩾ 0, P (D (B1,i, R1,i) ⩽ t) = P (D (B1,1, R1,1) ⩽ t) .

Then, by Theorem 2-1,
E[Hλ

opt] ⩾ E[H1
opt], ∀n ⩾ 1,∀λ ∈ (0, 1]. (15)

(ii) Theorem 2-2 tells us that, the closer the eccentricity of the boundary is to 0 (when the boundary
is a circle), in other words, the closer λ is to 1, the lower E[Hλ

opt] (see the numerical results in
Figure 4.3).

Figure 4.3: E[Hλ
opt] as a function of n with standard error of the mean (SEM) error bars. The errors are

too small to be visible. The number of simulated instances is 1000.

(iii) In the proof of Theorem 2-3, if M = UIUT , I is an identity matrix and U ∈ SOd(R), then

E[HΩ,Ω
opt ] = E[HΩ,Ω

opt ], ∀n ⩾ 1. It means E[Hopt] is the identical in the two congruent regions.
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(iv) Further, we observe that for the second part of Theorem 2, if the absolute value of determinant is
a ∈ R+ instead of 1, the stochastic order holds, so does eq.(14). Therefore, we can compare any
two ellipses that are equal in area, but the area is not necessarily equal to 1.

Let us now consider the case when Ω and Ω′ are triangles, R(Ω), B(Ω) are uniformly distributed on
Ω, and R(Ω′), B(Ω′) are uniformly distributed on Ω′. We define the Cartesian coordinate system so that
two vertices of the triangle are located at the same position on the positive half-axis of the horizontal
and vertical axes, respectively. This means, their coordinates are (α, 0) and (0, α), with α ∈ R+. When
the third vertex of the triangle is on the line y = x, we get

∀t ⩾ 0,P (D (Bi,x, Ri,x) ⩽ t) = P (D (Bi,y, Ri,y) ⩽ t) . (16)

In this case, Ω is an isosceles triangle (see Figure 4.4 4 for examples), and we denote the legs as l1, l2
and the base as l3, so |l3| =

√
2α. We do the transformation Λ = diag(λ, 1/λ), λ ∈ R+ on R(Ω), B(Ω)

to get points R(Ω′), B(Ω′) (examples of Ω′ with λ = 3
4 ,

4
3 are shown in Figure 4.45). Therefore, by using

Theorem 2,

E[HΩ,Ω
opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1.

We then discuss this according to the shape of the triangle:

y = x

x

y

y = x

x

y

y = x

x

y

Figure 4.4: Examples of Ω (with red boundary) as right obtuse, or acute triangle. And examples of Ω′

(with pink boundary)

1. If Ω is a right triangle, so is Ω′. Ω′ is an isosceles triangle only if λ = 1;

2. if Ω is a obtuse triangle, so is Ω′. Ω′ is an isosceles triangle only if λ = 1;

3. if Ω is an acute triangle, Ω′ might be acute, right or obtuse. And except for the case when Ω is
an equilateral triangle, there is only one λ > 0 such that Ω′ is an isosceles triangle. The isosceles
triangle Ω′, which might be acute, right or obtuse (see Figure 4.56 7 for examples), and Ω are not
congruent, since the base of Ω gets longer and becomes one leg of Ω′.

In summary, every triangle Ω1 (including the isosceles triangle) can be obtained by picking a suitable
Cartesian coordinate system then transforming from an isosceles triangle Ω2 with λ > 1, except for the
equilateral triangle. Theorem 2-1 tells us that this transformation leads to a reduction in energy. That
is, for every triangle Ω1 which is not an equilateral triangle, we can find an acute isosceles triangle Ω2

such that
E[HΩ2,Ω2

opt ] ⩽ E[HΩ1,Ω1

opt ], ∀n ⩾ 1.

We can therefore conclude the following.

4Coordinates of the vertices of Ω in Figure 4.4 (1)-(3): {(2, 0), (0, 2), (0, 0)}, {(2.5, 0), (0, 2.5), (0.45, 0.45)},
{(1.5, 0), (0, 1.5), (−0.58,−0.58)}.

5Coordinates of the vertices of Ω′ in Figure 4.4 (1)-(3): {(1.5, 0), (0, 2.667), (0, 0)}, {(2.667, 0), (0, 1.5), (0, 0)};
{(1.875, 0), (0, 3.333), (0.3375, 0.6)}, {(3.333, 0), (0, 1.875), (0.6, 0.3375)}; {(1.125, 0), (0, 2), (−0.435,−0.773)},
{(2, 0), (0, 1.125), (−0.773,−0.435)}.

6Coordinates of the vertices of Ω in Figure 4.5 (1)-(3): {(1.9, 0), (0, 1.9), (−0.1026,−0.1026)},
{(1.3375, 0), (0, 1.3375), (−0.8266,−0.8266)}, {(1.2, 0), (0, 1.2), (−1.067,−1.067)}.

7Coordinates of the vertices of Ω′ in Figure 4.5 (1)-(3): {(1.0973, 0), (0, 3.29), (−0.0593,−0.1777)},
{(1.7013, 0), (0, 1.0515), (−1.0515,−0.6498)}, {(2.2458, 0), (0, 0.6412), (−1.997,−0.5701)}.
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y = x

x

y

y = x

x

y

y = x

x

y

Figure 4.5: Examples of Ω (with red boundary) as acute triangles and Ω′ as acute, right or obtuse
triangles (with pink boundary)

Proposition 5. If Ω is an equilateral triangle and Ω′ is a triangle with the same area, we always have

E[HΩ,Ω
opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1. (17)

To verify Proposition 5, we only need to compare E[Hopt] over isosceles triangles for n = 1 (see
Lemma 1).

Lemma 1. Let the family of isosceles triangles be

ΛΩ = Ω(λ) =

{
(x, y) ∈ R2 s.t.

1

λ2
(x− λ) ≤ y ≤ 1

λ2
(λ− x), x ∈ [0, λ], λ > 0

}
.

Then, we have, for n = 1,

E[Hλ
opt] ≥ E[H31/4

opt ] . (18)

Proof. Remark that the uniform distribution over Ω(1) has the following probability density function

ρX,Y (x, y) = 1Ω(x, y)

and hence the following marginals

ρX(x) = 2(1− x)1[0,1](x),

ρY (y) = (1 + y)1[−1,0](y) + (1− y)1[0,1](y).
(19)

For general λ, the marginals read

ρ
(λ)
X (x) =

2

λ2
(λ− x)1[0,λ](x),

ρ
(λ)
Y (y) = λ(1 + λy)1[− 1

λ ,0](y) + λ(1− λy)1[0, 1λ ](y) ,
(20)

which recover eq.(19) at λ = 1. Now, for s ∈ N, the moments write

E [Xs] = 2
λs

(s+ 2)(s+ 1)
, s ∈ N,

E [Y s] =

{
2

( 1
λ )

s

(s+2)(s+1) s even

0 s odd .

(21)
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As Bx, Rx ∼ X; By, Ry ∼ Y and B ⊥⊥ R,

E[Hλ
opt] = E

[
(Bx −Rx)

2 + (By −Ry)
2
]
= E

[
(Bx −Rx)

2
]
+ E

[
(By −Ry)

2
]

= 2E
[
X2
]
− 2E [X]

2
+ 2E

[
Y 2
]
− 2E [Y ]

2
= 2

(
E
[
X2
]
− E [X]

2
+ E

[
Y 2
])

= 2

(
λ2

6
−
(
λ

3

)2

+
1
λ2

6

)
=

λ2

9
+

1

3λ2
.

(22)

Then, when λ = 31/4, eq.(22) reaches the minimum. Thus, eq.(18) is proven, and Ω(31/4) is an equilateral
triangle.

Remark 4. Similarly, we can extend Proposition 5 to n-sided convex polygons, i.e., if Ω is an n-sided
regular convex polygon, and Ω′ is an n-sided convex polygon with the same area, then the eq.(17) holds.
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5 Research perspectives

The purpose of the current study was to understand several specific problems mentioned in the first
section. In Section 3 we introduced a theorem that can be used to study these different problems.
However, we have not discussed each situation fully. At the end of this report, we propose some works
that need to be perfected and present some research conjectures.

A number of limitations needs to be noted regarding Theorem 1. First, as mentioned in the re-
mark 1 (ii) in Section 3, we have not proved the necessity of the stochastic order of cost functions for
getting eq.(7). We believe that further study of this condition may contribute to our understanding of
the Euclidean Random Assignment Problems in general. Second, it would be interesting to study the
sufficient conditions which are more easily dealt with, as calculating the cumulative distribution function
of c(B1, R1) might be challenging (analytically), particularly for the higher dimensional problems.

Therefore, we propose an improvement of Theorem 1, using second-order stochastic dominance to
compare different Euclidean Random Assignment Problems.

Conjecture 1. Under the same assumptions as in Theorem 1,

c
(
B(Ω3), R(Ω4)

)
≤ssd c

(
B(Ω3), R(Ω4)

)
, (23)

if and only if
E[HΩ3,Ω4

opt ] ⩽ E[HΩ1,Ω2

opt ], ∀n ⩾ 1. (24)

In spite of its limitations, this theorem offers valuable insights into studying some difficult cases. In
terms of future work, we are considering several applications. Firstly, it is possible to find upper and
lower bounds for E[Hopt] on the k-star graphs that are closer to the exact solution using a similar method

(with some refinement) to Proposition 4. Secondly, for the comparison of E[HΩ,Ω
opt ] and E[HΩ,Ω′

opt ], the
issue when Ω′ depends on n, as we show in Section 1.3, is an intriguing one which could be usefully
explored in further research. In particular, we have the following conjectures as n → ∞.

Conjecture 2. Based on the same assumptions as in Theorem 1,

lim
n→+∞

E[HΩ3,Ω4

opt ] ⩽ lim
n→+∞

E[HΩ1,Ω2

opt ]. (25)

if and only if ∫ t

−∞
P(c

(
B(Ω3), R(Ω4)

)
⩽ t)dt ⩾

∫ t

−∞
P(c

(
B(Ω1), R(Ω2)

)
⩽ t)dt, for t → 0. (26)

Conjecture 3. Let Ω′ ⊂ Ω, and max{D(y, ∂Ω), y ∈ ∂Ω′} ⩽ 1√
n
. Then

lim
n→+∞

E[HΩ,Ω′

opt ] ⩾ lim
n→+∞

E[H(Ω,Ω)
opt ].

The proof of Conjecture 3 for one case (as shown in Figure B.1) :

Ω′ = [0, 1]× [0, 1− 1√
n
] ⊂ [0, 1]2 = Ω

is provided in Section A.3. The proof of the general case is an open question, and the link between ERAP
and Monge-Kantorovich problem reviewed in section 2 might be helpful in finding a rigorous proof.
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A Proofs

A.1 Proof of Theorem 1

Let {Xi, 1 ⩽ i ⩽ m} be m r.v.s, and {Yi, 1 ⩽ i ⩽ m} be m r.v.s such that

FXi
(t) ⩾ FYi

(t), ∀t ⩾ 0, ∀1 ⩽ i ⩽ m. (27)

We will discuss some findings about {Xi} and {Yi} in Steps 1 and 2. Then applying these findings, by
substitution in Steps 3 and 4, we will get eq.(8) and eq.(9). In other words, we will obtain the stochastic

order of min
π∈Sn

{
n∑

i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) )

}
and min

π∈Sn

{
n∑

i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) )

}
. In Step 5, we will finish the proof.

Step 1. We now prove that if {Xi} are i.i.d. r.v.s, {Yi} as well, then ∀1 ⩽ k ⩽ m,

F∑k
j=1 Xj

(t) ⩾ F∑k
j=1 Yj

(t), ∀t ⩾ 0. (28)

In fact, ∀t ⩾ 0,
FXi

(t) ⩾ FYi
(t) ⇒ P(Xi ⩽ t) ⩾ P(Yi ⩽ t). (29)

By independence, we have

F∑k
j=1 Xj

(t) = P

 k∑
j=1

Xj ⩽ t

 =

k∏
j=1

P

(
Xj ⩽ t−

j−1∑
i=1

Xi

)
, ∀1 ⩽ k ⩽ m. (30)

or equivalently

F∑k
j=1 Xj

(t) = P

 k∑
j=1

Xj ⩽ t

 =

k∏
j=1

P (Xj ⩽ tj) , ∀ 0 ⩽ tj ⩽ t, ∀1 ⩽ k ⩽ m with

k∑
j=1

tj = t .

An analogous expression holds for the cdf of
∑k

j=1 Yj ’s, namely,

F∑k
j=1 Yj

(t) = P

 k∑
j=1

Yj ⩽ t

 =

k∏
j=1

P

(
Yj ⩽ t−

j−1∑
i=1

Yi

)
, ∀1 ⩽ k ⩽ m. (31)

Therefore, we apply eq.(29) to the right-hand side of eq.(30) and eq.(31) to get eq.(28).

Step 2. Now we prove the following inequality by contradiction,

Fmin1⩽j⩽m {Xj}(t) ⩾ Fmin1⩽j⩽m {Yj}(t), ∀t ⩾ 0. (32)

If there exist t ⩾ 0 and 1 ⩽ i1, i2 ⩽ m such that

Fmin1⩽j⩽m{Xj}(t) = FXi1
(t), Fmin1⩽j⩽m{Yj}(t) = FYi2

(t), and FXi1
(t) < FYi2

(t),

then
FXi1

(t) < FYi2
(t) ⩽ FYi1

(t),

which reaches a contradiction.
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Step 3. Due to the i.i.d. assumption,

F
c
(
B

(Ω1)
i ,R

(Ω2)
j

)(t) = Fc(B(Ω1),R(Ω2))(t), ∀1 ⩽ i, j ⩽ n, ∀t ⩾ 0.

It means, ∀0 ⩽ i, j ⩽ n, c
(
B

(Ω1)
i , R

(Ω2)
j

)
follow the identical distributions. We remark that, for every

π, π′ ∈ Sn, {
c
(
B

(Ω1)
i , R

(Ω2)
π(j)

)
, ∀1 ⩽ i ⩽ n

}
and

{
c
(
B

(Ω3)
i , R

(Ω4)
π′(j)

)
, ∀1 ⩽ i ⩽ n

}
are sequences of n i.i.d. r.v.s. By the assumption (eq.(6)), ∀1 ⩽ i, j ⩽ n,

F
c
(
B

(Ω3)
i ,R

(Ω4)

π(i)

)(t) ⩾ F
c
(
B

(Ω1)
j ,R

(Ω2)

π′(j)

)(t), ∀t ⩾ 0 ,

and we bring the following substitutions into eq.(27) and eq.(28) of Step 1

m −→ n,

k −→ n,

Xj −→ c(B
(Ω3)
i , R

(Ω4)
π(i) ),

Yj −→ c(B
(Ω1)
i , R

(Ω2)
π′(i)),

then,
F∑n

i=1 c(B
(Ω3)
i ,R

(Ω4)

π(i)
)
(t) ⩾ F∑n

i=1 c(B
(Ω1)
i ,R

(Ω2)

π′(i))
(t), ∀t ⩾ 0. (33)

Step 4. We remark that {
n∑

i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) ), ∀π ∈ Sn

}

are n! identically distributed r.v.s because ∀0 ⩽ i, j ⩽ n, c
(
B

(Ω1)
i , R

(Ω2)
j

)
follow the identical distribu-

tions. By the same reason, {
n∑

i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) ), ∀π ∈ Sn

}
are n! identically distributed r.v.s. Using eq.(33), and we bring the following substitutions into eq.(27)
and eq.(32) of Step 2

m −→ n!,

{Xj} −→

{
n∑

i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) ),∀π ∈ Sn

}
,

{Yj} −→

{
n∑

i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) ),∀π ∈ Sn

}
,

then,
F
min

{∑n
i=1 c(B

(Ω3)
i ,R

(Ω4)

π(i)
),∀π∈Sn

}(t) ⩾ F
min

{∑n
i=1 c(B

(Ω1)
i ,R

(Ω2)

π(i)
),∀π∈Sn

}(t), ∀t ⩾ 0. (34)

Step 5. Since min
π∈Sn

n∑
i=1

c(x, y) is non-negative, E
[
min
π∈Sn

n∑
i=1

c(x, y)

]
=
∫ +∞
0

(
1− F

min
π∈Sn

n∑
i=1

c(x,y)
(t)

)
dt.
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Thus,

E

[
min
π∈Sn

n∑
i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) )

]
− E

[
min
π∈Sn

n∑
i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) )

]

=

∫ +∞

0

(
1− F

min
π∈Sn

n∑
i=1

c(B
(Ω1)
i ,R

(Ω2)

π(i)
)
(t)

)
dt−

∫ +∞

0

(
1− F

min
π∈Sn

n∑
i=1

c(B
(Ω3)
i ,R

(Ω4)

π(i)
)
(t)

)
dt

=

∫ +∞

0

(
F

min
π∈Sn

n∑
i=1

c(B
(Ω3)
i ,R

(Ω4)

π(i)
)
(t)− F

min
π∈Sn

n∑
i=1

c(B
(Ω1)
i ,R

(Ω2)

π(i)
)
(t)

)
dt ⩾ 0 .

We conclude that

E

[
min
π∈Sn

n∑
i=1

c(B
(Ω1)
i , R

(Ω2)
π(i) )

]
⩾ E

[
min
π∈Sn

n∑
i=1

c(B
(Ω3)
i , R

(Ω4)
π(i) )

]
, ∀n ⩾ 1. (35)

We notice that if∫ +∞

0

(
1− F

min
π∈Sn

n∑
i=1

c(B
(Ω1)
i ,R

(Ω2)

π(i)
)
(t)

)
dt = +∞, or,

∫ +∞

0

(
1− F

min
π∈Sn

n∑
i=1

c(B
(Ω3)
i ,R

(Ω4)

π(i)
)
(t)

)
dt = +∞,

eq.(35) holds naturally.
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A.2 Proof of Theorem 2

1. By assumption, ∀1 ⩽ i ⩽ d, ∀t ⩾ 0, P (Dp (B1,i, R1,i) = t) = P (Dp (B1,1, R1,1) = t). Thus,

P (|λ1|p|B1,1 −R1,1|p + |λ2|p|B1,2 −R1,2|p + · · ·+ |λd|p|B1,d −R1,d|p ⩽ t)

= P (|λ1|p|B1,2 −R1,2|p + |λ2|p|B1,3 −R1,3|p + · · ·+ |λd|p|B1,1 −R1,1|p ⩽ t)

= . . .

= P (|λ1|p|B1,d −R1,d|p + |λ2|p|B1,1 −R1,1|p + · · ·+ |λd|p|B1,d−1 −R1,d−1|p ⩽ t) .

We remark that, if for every t ⩽ 0, P(X ⩽ t) = P(Y ⩽ t) then P(X ⩽ t) = P(X +Y ⩽ 2t). Therefore,

P (|λ1|p|B1,1 −R1,1|p + |λ2|p|B1,2 −R1,2|p + · · ·+ |λd|p|B1,d −R1,d|p ⩽ t)

=P

(
d∑

i=1

|λi|p|B1,1 −R1,1|p +
d∑

i=1

|λi|p|B1,2 −R1,2|p + · · ·+
d∑

i=1

|λi|p|B1,d −R1,d|p ⩽ d× t

)

=P


d∑

i=1

|λi|p

d
|B1,1 −R1,1|p +

d∑
i=1

|λi|p

d
|B1,2 −R1,2|p + · · ·+

d∑
i=1

|λi|p

d
|B1,d −R1,d|p ⩽ t

 .

Meanwhile,

P (|B1,1 −R1,1|p + |B1,2 −R1,2|p + · · ·+ |B1,d −R1,d|p ⩽ t)

=P


d∑

i=1

|λi|p

d
|B1,1 −R1,1|p +

d∑
i=1

|λi|p

d
|B1,2 −R1,2|p + · · ·+

d∑
i=1

|λi|p

d
|B1,d −R1,d|p ⩽

d∑
i=1

|λi|p

d
t

 .

As

∣∣∣∣ d∏
i=1

λi

∣∣∣∣ = 1, by the inequality of arithmetic and geometric means, we get

d∑
i=1

|λi|p

d
⩾ (

d∏
i=1

|λi|p)1/d = (

d∏
i=1

|λi|)p/d = 1.

In conclusion,

FDp(B′
1,R

′
1)
(t) = P (Dp (B′

1, R
′
1) ⩽ t) = P (Tr ((abs(ΛB1 − ΛR1))

p
) ⩽ t)

= P (|λ1|p|B1,1 −R1,1|p + |λ2|p|B1,2 −R1,2|p + · · ·+ |λd|p|B1,d −R1,d|p ⩽ t)

⩽ P (|B1,1 −R1,1|p + |B1,2 −R1,2|p + · · ·+ |B1,d −R1,d|p ⩽ t)

= P (Tr ((abs(B1 −R1))
p
) ⩽ t) = P (Dp (B1, R1) ⩽ t) = FDp(B1,R1)(t), ∀t ⩾ 0,

i.e.,
Dp (B1, R1) ≤st D

p (B′
1, R

′
1), ∀p ∈ R+,

and hence, by Theorem 1,

E[HΩ,Ω
opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1.

2. We use monotonicity of trace functions (see e.g. [41, Section 2.2]) w.r.t. the function f(t) = tp (which
is monotone increasing ∀p > 0): For any Hermitian matrix A, the function A → Tr[Ap] is monotone
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increasing on R+. In our case,

Tr (abs(Λ′′)) ⩽ Tr (abs(Λ′)) =⇒ Tr ((abs(Λ′′))p) ⩽ Tr ((abs(Λ′))p) ⇐⇒
d∑

i=1

|λ′′
i |p ⩽

d∑
i=1

|λ′
i|p.

Then, as above, by the assumption, ∀1 ⩽ i ⩽ d, ∀t ⩾ 0, P (Dp (B1,i, R1,i) = t) = P (Dp (B1,1, R1,1) = t),
we have

FDp(B′′
1 ,R′′

1 )
(t) = P (Dp (B′′

1 , R
′′
1 ) ⩽ t) = P (Tr ((abs(Λ′′B1 − Λ′′R1))

p) ⩽ t)

=P (|λ′′
1 |p|B1,1 −R1,1|p + |λ′′

2 |p|B1,2 −R1,2|p + · · ·+ |λ′′
d |p|B1,d −R1,d|p ⩽ t)

=P


d∑

i=1

|λ′′
i |p

d
|B1,1 −R1,1|p +

d∑
i=1

|λ′′
i |p

d
|B1,2 −R1,2|p + · · ·+

d∑
i=1

|λ′′
i |p

d
|B1,d −R1,d|p ⩽ t



=P

|B1,1 −R1,1|p + |B1,2 −R1,2|p + · · ·+ |B1,d −R1,d|p ⩽
d

d∑
i=1

|λ′′
i |p

× t



⩾P

|B1,1 −R1,1|p + |B1,2 −R1,2|p + · · ·+ |B1,d −R1,d|p ⩽
d

d∑
i=1

|λ′
i|p

× t

 , since

d∑
i=1

|λ′′
i |p ⩽

d∑
i=1

|λ′
i|p

=P


d∑

i=1

|λ′
i|p

d
|B1,1 −R1,1|p +

d∑
i=1

|λ′
i|p

d
|B1,2 −R1,2|p + · · ·+

d∑
i=1

|λ′
i|p

d
|B1,d −R1,d|p ⩽ t


=P (|λ′

1|p|B1,1 −R1,1|p + |λ′
2|p|B1,2 −R1,2|p + · · ·+ |λ′

d|p|B1,d −R1,d|p ⩽ t)

=P (Tr ((abs(Λ′B1 − Λ′R1))
p) ⩽ t) = P (Dp (B′

1, R
′
1) ⩽ t) = FDp(B′

1,R
′
1)
(t), ∀t ⩾ 0.

Therefore, Dp (B′′
1 , R

′′
1 ) ≤st D

p (B′
1, R

′
1) and using again Theorem 1,

E[HΩ′′,Ω′′

opt ] ⩽ E[HΩ′,Ω′

opt ], ∀n ⩾ 1.

3. Since M is real symmetric, it is diagonalizable by rotation matrices: M = UΛUT , where

(a) Λ is a diagonal d× d matrix, and |det(Λ)| = 1, since |det(M)| = 1;

(b) U ∈ SOd(R).

Clearly

D
(
UΛUTB1, UΛUTR1

)
= D

(
ΛUTB1,ΛU

TR1

)
, D

(
UTB1, U

TR1

)
= D (B1, R1) ,

so that, ∀p, we have

FDp(UΛUTB1,UΛUTR1)(t) = FDp(ΛUTB1,ΛUTR1)(t), FDp(UTB1,UTR1)(t) = FDp(B1,R1)(t), ∀t ⩾ 0.

According to Theorem 2-1, ∀p > 0,

FDp(ΛUTB1,ΛUTR1)(t) ⩽ FDp(UTB1,UTR1)(t), ∀t ⩾ 0.
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In summary, ∀p > 0,

FDp(MB1,MR1)(t) = FDp(UΛUTB1,UΛUTR1)(t) ⩽ FDp(B1,R1)(t), ∀t ⩾ 0,

i.e. Dp (B1, R1) ≤st D
p (MB1,MR1). Therefore, after using Theorem 1,

E[HΩ,Ω
opt ] ⩽ E[HΩ,Ω

opt ], ∀n ⩾ 1.
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A.3 Proof of Proposition 3

For case 1: Ω = [0, 1]2 and Ω′ = [0, 1]× [0, 1− 1√
n
].

Let us consider Bi, Rj ∈ Ω = [0, 1]2, for i, j = 1, . . . , n. We consider a set Ω′ which is image of Ω

via a linear transformation, Ω′ = ΛΩ, where Λ =

1 0

0 1− 1√
n

. That is, letting Rj = (Rj,x, Rj,y)
T

(and similarly Bj = (Bj,x, Bj,y)
T ), we transform only the red points and consider the ERAP between

R′
j = ΛRj ∈ Ω′ = [0, 1]× [0, 1− 1√

n
] and Bi = (Bi,x, Bi,y)

T ∈ Ω. We have

HΩ,Ω′

opt = min
π∈Sn

n∑
i=1

D2(Bi, R
′
π(i))

=

n∑
i=1

D2(Bi, R
′
π̂(i))

(
here, we denote π̂′ such that

n∑
i=1

D2(Bi, R
′
π̂′(i)) = min

π∈Sn

n∑
i=1

D2(Bi, R
′
π(i))

)

=

n∑
i=1

|Bi − ΛRπ̂′(i)|2 =

n∑
i=1

∣∣∣∣∣∣∣
Bi,x

Bi,y

−

1 0

0 1− 1√
n


Rπ̂′(i),x

Rπ̂′(i),y


∣∣∣∣∣∣∣
2

=

n∑
i=1

(
(Bi,x −Rπ̂′(i),x)

2 + (Bi,y −Rπ̂′(i),y +
1√
n
Rπ̂′(i),y)

2

)

=

n∑
i=1

|Bi −Rπ̂′(i)|2 + 2

n∑
i=1

1√
n
Rπ̂′(i),y(Bi,y −Rπ̂′(i),y) +

n∑
i=1

R2
π̂′(i),y

n

=

n∑
i=1

|Bi −Rπ̂′(i)|2 +
1√
n

n∑
i=1

2Rπ̂′(i),yBi,y + (
1

n
− 2√

n
)

n∑
i=1

R2
π̂′(i),y

=

n∑
i=1

|Bi −Rπ̂′(i)|2 −
1√
n

n∑
i=1

(
(Rπ̂′(i),y −Bi,y)

2 −R2
π̂′(i),y −B2

i,y

)
+ (

1

n
− 2√

n
)

n∑
i=1

R2
π̂′(i),y

=(1− 1√
n
)

n∑
i=1

|Bi −Rπ̂′(i)|2 +
1√
n

n∑
i=1

B2
i,y + (

1

n
− 1√

n
)

n∑
i=1

R2
π̂′(i),y

⩾(1− 1√
n
)

n∑
i=1

|Bi −Rπ̂(i)|2 +
1√
n

n∑
i=1

B2
i,y + (

1

n
− 1√

n
)

n∑
i=1

R2
π̂(i),y(

here, we denote π̂ such that

n∑
i=1

D2(Bi, Rπ̂(i)) = min
π∈Sn

n∑
i=1

D2(Bi, Rπ(i))

)

=(1− 1√
n
)HΩ,Ω

opt +
1√
n

n∑
i=1

B2
i,y + (

1

n
− 1√

n
)

n∑
i=1

R2
π̂(i),y.

Then, taking expectation of the two sides of the inequality, we get

E[HΩ,Ω′

opt ] ⩾(1− 1√
n
)E[HΩ,Ω

opt ] + E[
1√
n

n∑
i=1

B2
i,y + (

1

n
− 1√

n
)

n∑
i=1

R2
π̂(i),y]

=(1− 1√
n
)E[HΩ,Ω

opt ] + E[
√
nB2

i,y] + E[(1−
√
n)R2

π̂(i),y]

=(1− 1√
n
)E[HΩ,Ω

opt ] + E[R2
π̂(i),y]

=(1− 1√
n
)E[HΩ,Ω

opt ] +
1

3
,

(
here, we remark that E[R2

π̂(i),y] =

∫ 1

0

x2dx =
1

3

)
.
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Thus, in particular,

lim
n→+∞

E[HΩ,Ω′

opt ] ⩾ lim
n→+∞

E[HΩ,Ω
opt ].
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B Figures

Figure B.1: Instances of case 1: Ω = [0, 1]2 and Ω′ = [0, 1]× [0, 1− 1√
n
]. Left: n = 100. Right: n = 1000.

Figure B.2: Instances of case 2: Ω = B(0, 1√
π
) and Ω′ = B(0, 1√

π

√
1− 1√

n
). Left: n = 100. Right:

n = 1000.

Figure B.3: Instances of case 3: Ω = B(0, 1√
π
) and Ω′ = B(0, 1√

π
) \ B(0, n−1/4

√
π

). Left: n = 100. Right:
n = 1000.
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