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sunt igitur venti ni mirum corpora caeca
quae mare, quae terras, quae denique nubila caeli

verrunt ac subito vexantia turbine raptant,
nec ratione fluunt alia stragemque propagant

et cum mollis aquae fertur natura repente
flumine abundanti, quam largis imbribus auget

montibus ex altis magnus decursus aquai
fragmina coniciens silvarum arbustaque tota,

nec validi possunt pontes venientis aquai
vim subitam tolerare: ita magno turbidus imbri

molibus incurrit validis cum viribus amnis,
dat sonitu magno stragem volvitque sub undis

grandia saxa, ruit qua quidquid fluctibus obstat.

— Lucretius, De Rerum Natura, Liber I, vv.277-294
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S O M M A R I O

A partire dal lavoro seminale di Mézard e Parisi in Mézard e Pari-
si, 1985 si è assistito ad una crescente commistione tra i metodi della
teoria dei sistemi disordinati a bassa temperatura ed alcuni problemi
complessi di ottimizzazione combinatoria alle cui diverse configurazio-
ni è possibile associare un costo, che in meccanica statistica prende il
significato di una energia. Parte di questo interesse nasce dal fatto che,
pure in presenza di disordine, da un lato le simulazioni al calcolatore
hanno mostrato comportamenti ricchi per tutta una classe di modelli,
e dall’altro, le tecniche della fisica hanno permesso per la prima volta
di ottenere risultati analitici sulle loro soluzioni.

Tra i numerosi problemi che possono essere studiati in questo modo,
nel presente lavoro è stato analizzato il problema dell’assegnazione
lineare; esso può essere descritto ad esempio come la ricerca dell’at-
tribuzione di n compiti ad n agenti che minimizza il tempo totale di
esecuzione laddove sia noto il tempo tij impiegato dall’agente i per
svolgere il compito j.

Lo svolgimento della tesi è articolato in due parti: dapprima è stata
realizzata una implementazione nel linguaggio C++ dell’algoritmo di
Jonker-Volgenant (Jonker e Volgenant, 1987) per la risoluzione del pro-
blema dell’assegnazione lineare; tale implementazione è stata poi im-
piegata nello studio del ground state del problema dell’assegnazione
Euclidea in D dimensioni, dove i vincoli imposti dalla metrica rendo-
no frustrato il sistema, e della sua approssimazione di campo medio
quando D→∞, dove invece il costo dell’assegnazione è una variabile
aleatoria.

vi



A B S T R A C T

The pioneering work by Mézard and Parisi Mézard and Parisi, 1985

proved that methods from the theory of disordered systems at low tem-
perature can be used to solve very difficult combinatorial optimisation
problems, being possible to assign an energy to their configurations
and proceed with the usual apparatus of statistical mechanics. More-
over, numerical simulations showed reach behaviors that, as well as
being approachable by replica calculations, opened a lot of interesting
questions.

Among the variety of problems that one can study in this context
this work focused on the linear sum assignment problem, which can
be described for example as the assignment of n tasks to n workers in
such a way that the total time of execution of the tasks is minimum,
being known that worker i spends tij seconds to complete the task j.

The work was developed in two stages: first it was constructed and
tested a C++ implementation of the Jonker-Volgenant algorithm that
solves a general linear sum assignment problem; this code was used
to study the Euclidean bipartite matching problem in D dimensions,
where frustration is imposed by the geometry of the ambient space,
and to see how this problem reaches its mean field approximation
in the D → ∞ limit (the random assignment problem), where the
assignment cost is completely aleatory.
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1 I N T R O D U C T I O N

Combinatorial optimisation may be defined as the set of results and
techniques used to find extrema of some application taking values only
on a finite (or at most countable) set S, where the usual apparatus of
mathematical analysis is not available. A typical problem in combi-
natorial optimisation can be split in two parts: in the first one com-
putes the cardinality of a set |S|, given certain constraints (combinato-
rial part); in the second part one investigates ordinability of elements
u ∈ S with respect to some function φ : S → R which we may call an
“energy”, the most common problems being the study of existence and
uniqueness of extrema for φ (optimisation part). It is also of interest
the study of the dependence of properties of such extrema upon the
aforementioned constraints, which one can call the “boundary condi-
tions”.

Given the generality of the previous considerations it should not
come unexpected that in physics and applied mathematics a very large
class of problems, in particular the ones concerning probability theory,
can be cast in this fashion.

At the simplest level consider for example a n× n chessboard and
suppose to be interested in counting in how many ways it is possible
to tile it with domino (i.e. rectangles 2 × 1) pieces. Moreover: is it
possible to tile completely the chessboard in figure 1? The other problem

mentioned in the
prefaciont of
Arnol’d, 2004 states:
“From a barrel of
wine, a spoon was
poured into a cup of
tea, and then the
same spoon of the
obtained
(nonhomogeneous!)
mixture was poured
from the cup back
into the barrel.
Where did the
amount of the
foreign beverage
become greater?”

Figure 1: The 8× 8 “mutilated chessboard”.

In the preface of the first edition of Arnol’d, 2004, talking about this
problem the author states literally: “Mathematical training in Moscow
usually begins before the school age. Here is a couple of excercises
(children 4—5 years old would have solved them in half an hour)...”.

At fist glance it may seem that problems of this kind are of little
or no concern to physics; but it is worth noticing that tiling problems

1



2 introduction

arise quite naturally in statistical physics, for example in the study of
the macroscopic properties of a system constituted of a great number
of dimer-like particles on a lattice. Maybe the most famous example
of a computation involving combinatorial arguments of this kind was
shown more than fifty years ago in Kasteleyn, 1961 where closed for-
mulas for the domino-tiling problem on an arbitrary n×m chessboard
are also obtained.

Computing the partition function Z of a system of course has to do
with counting (or possibly measuring) all its accessible configurations
(Z is the initial of the German Zustandssumme, “sum over the states”);
this already difficult task becomes even harder in presence of disorder.

When a system is disordered (under some assumption) one can
study the average properties of the thermodynamic quantities of inter-
est: for example one may assume that the typical time scale of the
fluctuations of the disorder can be considered infinite, a disorder of
this kind being called “quenched disorder”; even showing that the rel-
ative fluctuations of extensive quantities like the free energy vanish in
the thermodynamic limit is far from trivial. A thermodynamic quan-
tity for which the previous statement holds is known in the literature
as “self-averaging”.

This scenario becomes even more difficult in presence of hard con-
straints, constraints that have little or nothing to do with disorder but
are instead intrinsic to the system, reflecting geometrical or even topo-
logical features of the state space. Systems exhibiting those essential
constraints are called frustrated. An example of topological constraint
is the mutilation of the chessboard in figure 1; in this thesis work it
was studied frustration of geometrical type induced by an Euclidean
space.

Combinatorial optimisation is a rather broad and interdisciplinary
field, its ideas stretching from theoretical computer science to statistical
physics throughout graph theory, the latter providing the ground basis
for both exact results and construction of efficient algorithms. One
example of non trivial property that is very useful in the construction
of an optimisation algorithms is that a greedy-like approach, such as
the one discussed in 2.2.2 –where optimisation happens at local level
during the exploration of paths on a graph– can be implemented to
speed-up a certain linear program, called the linear sum assignment
problem, as the paradigmatic abstract problem for all the numerical
investigations of this work.

The literature implied by the previous remarks is immense; in order
for this work to be as autonomous as possible, a number of choices
were necessary. They can be summarized as follows.
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graph theory and computational aspects is an exposition of re-
sults in graph theory, mainly in the case of simple undirected
graphs. This rather long path was taken to formulate mathemat-
ically the definition of a Linear Sum Assignment Problem, and
with the aim to elucidate the primal-dual shortest-augmenting
path algorithm Jonker and Volgenant, 1987 discussed in 2.3.2 that
constituted the core this thesis work.

random assignment vs euclidean bipartite matching contains
the two models studied in the thesis work. They can be both for-
mulated as linear sum assignment problems, but while in the first
case correlations are induced only by the matching constraint, in
the second also euclidean geometry plays a role. The relationship
between those two problems is extensively investigated numeri-
cally in 3.5, with a simulation lasted two weeks of total compu-
tational time. The work done and the corresponding numerical
findings are presented intertwined with already known results,
recalling the literature throughout the exposition.

the appendix a contains proofs of some theorem at the heart of the
algorithm, and a brief comment on a particular stochastic pro-
cess that emerges in the study of the one dimensional Euclidean
matching problem.
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2.3.2 The Jonker-Volgenant algorithm . . . . . . . 17
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2.1 methodological remark

The birth of graph theory dates back to the work of Euler, who in
Euler, 1741 solved the famous puzzle about the traversability of the
seven bridges of the prussian city of Koenigsberg, excluding the pos-
sibility to travel the city with a path that never returns to the same
bridge. But it wasn’t until the 1940’s that graph theory acquired full See Alexanderson,

2006 for an
historical point of
view on Euler’s
pioneering works in
topology during the
period 1735-1759.

centrality as a branch of mathematics, on top of the first monographs,
in particular, as quoted in Tutte, 1984, with the publication of “the first
book on graph theory” König, 1936.

With its rather general setting and broad spectrum of applications,
graph theory is a very fast growing area of mathematics with deep and
tangled bonds in both computer science and statistical physics.

Without presumption of completeness, this section aims at fixing
notations, explaining why a general linear assignment problem attains
its extrema on permutation matrices, meanwhile exposing results in
graph theory to elucidate the algorithm used in the thesis work, in an
as personal as possible manner and with simple examples.

The textbooks consulted for the background study of this part are
Chartrand and Zhang, 2012 for the foundational aspects, Tutte, 1984

for rigorous results and Steen, 2010 for the point of view of computer
science and a very neat presentation of the algorithm of section 2.2.2.

5



6 graph theory and computational aspects

2.2 graph theory

2.2.1 Basic definitions

A graph G is a couple (V(G),E(G)) where the set V(G) is the vertex
set, whose elements u, v, . . . are called vertices or nodes (or sites), and
the set E(G), such that E(G) ⊂ P(V(G)), is called the edge set, an
element of which is called an edge (and sometimes a link, a bond or a
line, depending on the contest).

Sometimes the cardinality |V(G)| of the vertex set V(G) of a graph
G is called the order of the graph, and correspondingly the size of its
edge set |E(G)| is called the size of the graph; throughout this work
an element of E(G) is uniquely identified by a couple of vertices (say
u and v): when ordering is inessential, the graph is called undirected;
when the edge e = (u, v) 6= (v,u), the graph is called directed, or digraph,
and each edge can be thought to possess a head and a tail.

It is customary to refer to the structure of a graph as a collection
of incidence relations, meaning that every edge is incident to exactly
two vertices, while a vertex can be incident to an arbitrary number of
edges. The number of edges that are incident with a certain vertex v in
an undirected graph is called the degree or the coordination number of v,
usually denoted as deg(v) or δ(v); the set of vertices at the other ends
of the edges incoming in v, whose number adds up to δ(v), is called
the neighborhood of v, N(v).

When dealing with a digraph it is convenient to introduce the in(out)-
degree of a vertex, indicated as in(out)deg(v), the total number of edges
entering (exiting) the vertex v, and in the same spirit one defines the
in(out)-neighborhood Nin(out)(v). Clearly

Nin(v)∩Nout(v) = ∅

so that N(v) = Nin(v)∪Nout(v).
A graph G is bipartite if two subsets exist U and V , called the partite

sets) of the vertex set V(G), in such a way that V(G) = U ∪ V , with
U ∩ V = ∅ and every vertex of a partite set has its neighborhood only
in the other one, i.e. ∀u ∈ UN(u) ⊂ V . A bipartite graph G with
partite sets U and V is usually denoted as GU,V

Since every edge in a graph sticks to two vertices (or to one vertex
twice), the sum of the coordination numbers over all vertices of an
undirected graph is always even and equals 2|E|; in the present nota-
tion this property (known in the literature as the “handshaking lemma”
since it states that the number of handshakes in an arbitrary party is
always even) is ∑

vi∈V(G)

δ(vi) = 2|E(G)|

With a slight modification this same result holds also in the theory of
directed graphs.
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u v1

v2
v3

v4

v5

w

(a) A simple graph with |V | = 7 and
|E| = 7

u v1

v2
v3

v4

v5

w

(b) One of the 128 possible orienta-
tions of the graph in figure 2a

Figure 2: In figure 2a a simple connected graph; in figure 2b a directed graph.

In a digraph an edge has exactly one head and one tail, so that∑
vi∈V(G)

outdeg(vi) =
∑

vi∈V(G)

indeg(vi) = |E(G)|

A subgraph H ⊆ G is obtained by selecting a subset of E(G) or V(G)
without violating incidence relations (i.e. u ∈ V(H) ⇒ u ∈ V(G),
e ∈ E(H)⇒ e ∈ E(G) and the endpoints of e are legit vertices of G).

In the first case, H is called an edge-induced subgraph, while in the
second H a vertex-induced subgraph. Trivial subgraphs are the whole
graph G and the graph ∅ where V(∅) ≡ V(G) and E(∅) = ∅. Moreover
if V(H) ≡ V(G), H is called a spanning subgraph of G.

A walk of length l in a graph G is a list of consecutive adjacent
vertices, i.e. a subset of E(G) of the form

{ei}
l
i=1 , ei ∩ ei+1 6= ∅

(in a digraph, this intersection must be at least the tail of ei and the
head of ei+1.).

A walk is obtained starting from a vertex u and shifting to one of its
neighbors, and so on, until a vertex v is reached; for this reason a walk
of this type is also denoted as a u-v walk.

When in the sequence of edges constituting a walk there is no rep-
etition, i.e. ei 6= ej, i, j = 1, . . . l, the walk is called a trail. When in
the ordered list of edges composing a trail a vertex isn’t repeated more
than twice (except possibly the starting and ending point) the trail is
called a path and, again, is usually prefixed by its terminations (i.e. a
(u,v)-path means a path joining vertex u with vertex v). Any nontrivial
path starting and finishing at the same vertex is called a cycle.

A G is called connected if ∀v,w ∈ V(G) there exists a v-w walk. It is
clear that in general multiple paths may exist between any two vertices
of a graph; a union of two such paths, obtained by a concatenation of
edges constitutes a cycle. This is done pictorially by “gluing” their
starting end ending vertices.
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u1

u2

u3

u4 u5

v1

v2

v3

v4 v5

Figure 3: A walk (blue), a path (fuchsia) and a cycle (green) on a graph (see
example 3 for the definition of the particular graph at hand).

The incidence relations of a graph G are usually summarized in the
adjacency matrix Ad(G).

Having enumerated the vertices from 1 to |V(G)|, Ad(G) is a |V(G)|×
|V(G)| matrix whose ij-th entry is the number of edges linking vertex
i to vertex j, symmetrical in the case of a simple graph. This con-
struction can be trivially extendend to digraphs; for example since the
ij-th element of the adjacency matrix of a digraph D is the number of
vertices exiting from vertex vi and entering vertex vj, one has

|V(D)|∑
j=1

Adij(D) = |Nout(vi)|

Similarly, in some case it is more advisable to work with the laplacian
of the graph, simply defined as

Lij = deg(vi)δij −Adij (1)

In applications it is also useful to consider the weighted adjacency
matrix -and correspondingly the weighted laplacian of the graph- that is,
the matrix whose ij-th entry is some function of the edge connecting
vertex i to vertex j called the weight. In this thesis work for example,
two weighted adjacency matrices used are: one in which the i-j entry
is the P-th power of the Euclidean distance between point i and point
j, both chosen at random on the D-torus; and another in which the i-j
entry is distributed according to a known probability density.

Another example comes from the theory of electrical networks; there
the ij-th entry of the adjacency matrix is the capacity (or some other
physical property of the connections). For example it is possible to
state Kirchhoff laws on an arbitrary graph, as shown in Tutte, 1984,
chap VI, sec.5.

Using the (weighted) adjacency matrix also unlocks tools from lin-
ear algebra, maybe the most immediate of which is finite dimensional
spectral theory. This framework can be very useful to solve combina-
torial problems on graphs, as the following lemma shows.
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Lemma 1. The number of triangles in an undirected graphG is 16 TrAd(G)3.

Proof. Matrix multiplication shows that the ij-th entry of the l-th power
of the adjacency matrix is

Ad(G)lij =

|V(G)|∑
k1,...,kl=1

Adik1Adk1k2 · · ·Adklj

So an element of this sum is a vi-vj walk. Since a closed walk of length
3 is necessarily cycle called also a triangle, the statement follows by
taking l = 3 and summing on i = j and recalling that we are over-
counting by a coefficient 6 = 3× 2, the number of entry points in a
triangle times its two possible orientations.

Example 1 (The complete graph Kn). Consider the set V(G) = {1, . . . ,n}
and link every vertex with the other n− 1: the graph obtained in this
way is called the complete graph and is usually referred to as Kn.

From its very definition it is clear that its adjacency matrix is

Ad(Kn) =


0 1 1 . . .

1 0 1 . . .

1 1 0 . . .
...

...
...

. . .

 (2)

and so

|E(Kn)| =

n∑
i<j

Ad(Kn)ij =

(
n

2

)
(3)

the (n− 1)-th triangular number (and the number of ways of choosing
distinct couples in a set of n objects).

The characteristic polynomial of Ad(Kn), which sometimes is called
by extension the characteristic polynomial of Kn, can be found by sim-
ple arguments1. It is

Pn(λ) = (−)n(λ+ 1)n−1(λ+ 1−n) (4)

so that, by lemma 1 and simple properties of the trace, the number of
triangles in Kn equals

1

6

n∑
i=1

λ3i =
1

6

[
(n− 1)3 + (n− 1)(−1)3

]
=

(
n

3

)
(5)

the (n− 2)-th tetrahedral number and, of course, the number of dis-
tinct triples in a set of n objects, since a choice of three vertices uniquely
defines a triangle.

1 As explained in the first appendix
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1 2

3

Figure 4: The complete graph
K3 is also called 3-
cycle.

A subgraph H ⊆ G is obtained by se-
lecting a subset of E(G) without violat-
ing incidence relations (i.e. u ∈ V(H)→
u ∈ V(G), e ∈ E(H) → e ∈ E(G) and
the endpoints of e are legit vertices of G).
Special cases of subgraphs are the whole
graph G and the graph ∅.

If V(H) ≡ V(G) H is called a spanning subgraph of G.
The enumeration of all the spanning subgraph of a given graph G is

a very interesting problem which, as already outlined in the introduc-
tion, is of key importance in the applications, as the following example
shows.

Definition 1 (of trees and forests). A connected graph without cycles
is called a tree. A disjoint union of trees, i.e., a general acyclic graph is
called a forest.

Sometimes it is useful to identify a particular vertex v of a tree, call-
ing v the root; a tree with a root v is called a tree rooted at v.

Trees are the minimally connected graphs that is possible to con-
struct, i.e., they have the least possible of edges to ensure connectivity.
They are ubiquitous in pure and applied science and are completely
characterized by simple properties of connectivity. One of these cru-
cial properties is

|V(F)| = |E(F)|+ k(F) (6)

where k(F) is the number of connected component of the forest F.
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1 2

3

(a)

1 2

3

(b)

1 2

3

(c)

Figure 5: The 3 spanning trees of K3.

Theorem 1 (Matrix-tree or Kirchhoff theorem). The number of spanning
trees t(G) in a graph G with n vertices is a principal minor of its laplacian
matrix L(G), i.e. the determinant of the laplacian with a row and and a
column deleted and is such that

t(G) =
1

n

n−1∏
i=1

λi

{λi}
n−1
i=1 being the eigenvalues of L(G) relative to its Rank.

A proof of this theorem that uses only a simple counting argument
can be found in Godsil and Royle, 2001 (stated as theorem 13.2.1).

Example 2 (The number of spanning trees on the complete graph Kn).
The spectrum of L(Kn) can be inferred by noticing that the adjacency
matrix Ad(Kn), whose spectrum is given by 4, commutes with the
diagonal degree matrix.

The eigenvalues of L(Kn) are obtained simply shifting all the eigen-
values of Ad(Kn) by n− 1, i.e.

Pn(λ)
lap = Pn(λ+n− 1)adj = (−)nλ(λ−n)n−1 (7)

theorem 1 implies that the number of spanning trees of the complete
graph Kn is nn−2, the well known Cayley formula that also counts the
number of distinct labelled trees with n nodes.
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2.2.2 Dijkstra’s Algorithm

Consider the following problem: we are given n cities and the pos-
sible roads connecting them together with all the relative distances.
In general, as usual in real world scenario, a graph representing this
network of roads allows cycles, whereas multiple routes are possible
between each couple of cities (i.e. the underlying graph is not a tree).
Starting from a certain city, what is the shortest path connecting two
of them?

This problem has great relevance for example in communication net-
works, swapping roads with web connections and cities with servers.
There one is interested in finding the shortest route according to some
cost function, such as the elapsed time or the band occupied to estab-
lish a connection.

A rather elegant greedy-like algorithm to solve this problem is based
on the observation that subsets of a shortest path are necessarily the
shortest paths between their endpoints: a shortest path between three
or more vertices can always be thought incrementally.

This local property is at the core of the most used algorithm used in
the construction of the shortest-path tree or geodesic tree of a connected
graph, firstly proposed in Dijkstra, 1956The procedure at

hand is discussed in
Problem 2 of

Dijkstra’s paper. In
fact Problem 1 is

more of a global type,
dealing with the

search of a minimum
spanning tree, that

is, the tree T for
which∑

e∈E(T)w(e) is
minimum. Such a

tree is generally
different from a

shortest path tree.
Another somehow
greedy solution of

the minimum weight
spanning tree

problem can be
found in Kruskal,

1956.

An implementation of this algorithm in fact outputs not only a single
shortest path, but the entire shortest-path-tree rooted at some vertex s
called the sink, that is, all the shortest paths emanating from the sink.

To elucidate consider a simple weighted graph G with sink s ∈ V(G)
and |V(G)| = n. The development of this algorithm may be described
as follows.

1. Assign “intensities” to vertices: the value 0 to s, and ∞ to the
other n-1.

2. Construct the set B(s) of the already browsed vertices, that con-
tains nodes towards which the shortest path starting at s has
already been computed. Clearly at the first execution B(s) = s.

3. Consider the reachable set R(s) = ∪v∈B(s)N(v) \ B(s). Given u ∈
R(s), a closest element to B(s), update its intensity as I(u) ←
w(u), w(B(s),u) being the shortest weight of an edge connecting
u to B(s). Add u to B(s).

4. Iterate step 3 until B(s) = V(G).

This approach can be applied to both undirected and directed graph
with minor modifications.
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Example 3 (Geodesics on the Petersen graph). A geodesic between two
vertices u,v in a graph G is a synonym for a shortest (u,v)-path.

The Petersen graph P is a cubic graph (i.e. ∀vi ∈ P δ(vi) = 3) with
ten vertices and many interesting properties that make it the perfect
playground for counterexample in graph theory (see for example Char-
trand and Zhang, 2012, sec.8.5 for an historical perspective).

Here we want to find the shortest-path tree rooted at a certain arbi-
trary vertex that we have chosen as the sink (the biggest blue vertex in
figures 6a - 6f) by means of the Dijkstra’s algorithm.

During the necessary stages to algorithm to terminate – on account
of the limited space available only six of the ten stages are depicted
– the set B(s) is colored in blue, the reachable set R(s) in green; edge
weight’s labels and intensities are omitted again for clarity and is es-
tablished the convention that the edge pointing to the next vertex to be
added to B(s) is the only thick line connecting a vertex of B(s) to one
of R(s).

At the end all nine shortest path from the sink to the other vertices
are available.

(a) At initialization,
the sink is the
big blue vertex.
Its neighbor-
hood is colored
in green.

(b) At the first it-
eration, the set
of browsed ver-
tices B(s) grows
by one.

(c) At the third
stage the
reachable set
(depicted in
green) is almost
the entire vertex
set.

(d) During the
fourth stage
only one vertex
is unreachable.

(e) At the seventh
stage the reach-
able set is the
entire vertex set.

(f ) After ten stages
the construction
of the shortest-
path tree is com-
pleted .

Figure 6: Dijkstra’s algorithm execution on the Petersen graph.
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2.2.3 Matching theory

u1

u2

u3

u4 u5

v1

v2

v3

v4 v5

Figure 7: A perfect matching on the
Petersen graph.

Consider a connected graph G.
A matching M is a subset of E(G)
having the property that no two
of its edges are adjacent; equiva-
lently M is a collection of edges
in which a vertex is found at
most one time.

A matching M is called perfect
for a graph G if every vertex of G
figures in one (and exactly one)
of the edges of M.

The (spanning) subgraph in-
duced by a perfect matching
is also called a 1-factor, since

δ(vi) = 1, ∀i = 1, . . . ,n; in general one can define the k-factor of a graph
as the maximum spanning k-regular subgraph; clearly if a graph G has
a 1-factor then |V(G)| is an even number.

This work focused on bipartite perfect matching, since this frame-
work catches the fact that vertices stay in two different classes that have
to be coupled, such as the black and white points of section 3.3, ladies
and gentlemen that have to be married, requests of web pages from n
browsers to m servers, workers and tasks that have to be assigned to
them, and so on.

Perfect matchings in the complete bipartite graph Kn,n, also called
assignments, are the central objects of paragraph 2.3.1.

A characterizing –and somehow surprising, at least in its sufficient
part– result on matchings for bipartite graphs is the following.

Theorem 2 (Hall). A necessary and sufficient condition for a bipartite graph
GA,B (say without loss of generality s = |A| 6 |B|) to have a matching of
cardinality s is |H| 6 |N(H)|, for all H ⊂ A.

A constructive proof is given in A.1.2. The condition in theorem 2

(known in the literature as Hall’s condition) states that every subset of
vertices, as a whole, must have an appropriate number of neighbors.
Note that this theorem closes on a rigorous basis the truncated chess-
board problem mentioned in the introduction, where the partite sets
of blue squares B and white squares W violate Hall’s condition

30 = |W| = |N(B)| < |B| = 32

It is clear that, by the very definition, the number of perfect matchings
in a simple graph G is the permanent of its adjacency matrix:

perm(Ad(G)) =
∑
σ∈Sn

n∏
i=1

Adiσ(i)
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2.3 linear assignment problems

2.3.1 General considerations

A linear assignment problem, called sometimes a “linear sum assign-
ment problem”, is the search of an assignment of n objects of one kind
(say the jobs) to n objects of another kind (say the workers) given a cer-
tain cost per work cij in such a way that the objective function or total
cost

O(π) =

n∑
i=1

ciπ(i) (8)

attains its minimum. In this way an assignment on a bipartite graph
is a synonym for an invertible map from a finite set into itself, a permu-
tation, so that in full generality the search has to be conducted between
all the n! elements of the symmetric group Sn. It is clear that a brute
force approach would rapidly become unpractical.

It is convenient to restate the assignment problem in a slightly dif-
ferent way writing down explicitly the constraints of injectivity and
surjectivity of the assignment.

find min
n∑

i,j=1

cijxij

under constraints
n∑
a=1

xab = 1 b = 1, . . . ,n

n∑
b=1

xab = 1 a = 1, . . . ,n

xab ∈ {0, 1} a,b = 1, . . . ,n

(9)

A matrix xab respecting the three constraints in (9) is called a per-
mutation matrix.

If only the third constraint is relaxed to xab ∈ R+, a,b = 1, . . . ,n,
matrix xab is called doubly stochastic. Matrices of this type arise for
example in the theory of Markov chains, where the i-j entry is the
probability of transition from state i to state j.

A very important result characterize uniquely doubly stochastic ma-
trices.

Theorem 3 (Birkhoff-Von Neumann). Every doubly stochastic matrix is a
convex combination of permutation matrices.
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x1

x2

solution

Figure 8: An objective function of type
such as (8) attains its ex-
trema on the vertices of a
polytope.

A proof is in the appendix A.
In this way we are thinking at
the set of doubly stochastic ma-
trices of fixed size, called the
assignment politope, as immersed
in an ambient space. One can
show that it is the smallest con-
vex set containing all of its ver-
tices (the n! permutation matri-
ces). A closed set of this type is
called a convex hull of its vertices.
One can think at n × n permu-
tation matrices as points in Rn

2

and study the properties of this
polytope. The importance of the-
orem 3 stems from the fact that optimal solutions (for an objective
function of the type at hand) have to be attained at the vertices of the
assignment polytope which are the permutation matrices representing
perfect matchings. It is now possible to implement a strategy to solve
the linear assignment problem with relaxed constraints, the solution
being “automatically” a permutation matrix (in fact one can prove the
logical equivalence of Hall’s and Birkhoff-Von Neumann theorems).

To see how this strategy works, from now on the setting will be
exclusively that of a certain bipartite graph GU,V , where U = {ui}

|U|
i=1

and V = {vi}
|V |
i=1. Consider a known matching M: we want to construct

a procedure that increases its cardinality and that assures optimality.
To this end, consider an alternating path, a path for the matching M
that is constituted of edges alternatively in M and not in M such as the
one connecting u1 to v4 in figure 9a.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(a) A given match-
ing M is
depicted with
thick black lines.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(b) In black thick
line, an aug-
menting path
for the match-
ing M of figure
9a.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(c) The resulting
augmented
matching, in
black thick line,
is also perfect.

Figure 9: The procedure to increase the size of a matching.
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Definition 2 (Augmenting path). An alternating (u1−vr)-path is called
an augmenting path (for a certain matching M) if (u1, vr) 6∈M.

We now have a strategy to increase the cardinality of our matching:
we simply take the symmetric difference between the given matching
M and an augmenting path for M constructed in some convenient way,
as figure 9 shows. The matching M ′ constructed in this way clearly
satisfies |M ′| = |M|+ 1, and one could proceed until a perfect matching
is reached.

2.3.2 The Jonker-Volgenant algorithm

The Jonker-Volgenant (JV) algorithm of Jonker and Volgenant, 1987

is a primal-dual type algorithm (such as the Hungarian algorithm) in
which optimality is obtained by a shortest-augmenting path subrou-
tine based on the algorithm of section 2.2.2. The dual of linear problem
9 is realized as follows: one considers two sets of n variables, called
the dual variables, {ui}

n
i=1 and

{
vj
}n
j=1

, and searches for

max
n∑
i=1

ui +

n∑
j=1

vj

under constraints ui + vj 6 cij i, j = 1, . . . ,n

ui, vj ∈ R i, j = 1, . . . ,n

(10)

By demanding that xij(cij − ui − vj) = 0 for i, j = 1, . . . ,n (known
as the complementary slackness condition) one can iteratively update the
dual variables with a transformation T in such a way that, ∀π∑

i

ciπ(i) =
∑
i

(ciπ(i) − ui − vπ(i)) +φ(T)

At optimality φ(T) is the desired value. For example, in the classical
Hungarian algorithm of Kuhn, 1955 T is the row and column reduction
procedure.

Following the extensive survey on linear assignment problems of
Burkard and Çela, 1999 it is possible to describe the flow of this algo-
rithm as follows.

1. Find an appropriate initial couple of primal (9) and dual (10)
solutions respecting the complementary slackness condition.

2. Update the dual variables by constructing an augmenting path.
At step i the actual augmenting path is the minimum length aug-
menting path in the shortest path tree obtained with a clever
implementation of 2.2.2, and it joins an unassigned row to an
unassigned column.

3. In the worst case scenario, i.e. without a careful choice of the
initial primal-dual couple, step 2 iterates n times.
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2.4 implementation and features of the code

Disordered statistical mechanics numerical studies have to do with
average properties. It is clear that this may be pursued with at least nu-
merically with a Monte Carlo approach, where a core program solves
an instance of the problem at hand where the disorder is fixed, stor-
ing its output on some shared file. Only later the relevant means on
quenched disorder are obtained, possibly thanks to some degree of
parallelization.

The strongly sequential nature of algorithm Jonker and Volgenant,
1987 ruled out a single processing unit level parallelization, such the
ones involving a CUDA/OpenCL implementation for GPU comput-
ing.

In this particular case this kind of solutions proved unpractical es-
sentially for two reasons:

• The steps described in 2.3.2 must be executed by the same logical
processor, requiring a very high computational power per core.
This is not the case for a typical GPU computing unity.

• At high sizes a single instance of the program operates on ∼ 108

numbers during the lapjv phase. Data storing in this step re-
quires a very high amount of memory (of order 10 GB for N ∼

2 · 104).

In order to obtain parallelization at least at the machine level it was
chosen to splice up the code (679 lines of code in total) in three main
utilities:

1. The main program, written in C++ and containing a fully self-
consistent implementation of code Jonker and Volgenant, 1987

that accepts input parameters specific to the problem at hand
and print outputs on simple text files, their names containing
parameters values for future analysis. It can be easily tweaked if
different ways of filling the cost matrix are required.

1 //Input from command l i n e
2 s tar tdim = a t o i ( argv [ 1 ] ) ;
3 enddim = a t o i ( argv [ 2 ] ) ;
4 s tep= a t o i ( argv [ 3 ] ) ;
5 f l o a t P = a t o f ( argv [ 4 ] ) ;
6

7 // S t r i n g s c o n s t r u c t i o n
8 std : : s t r i n g temp ;
9 std : : s t r i n g p = std : : t o _ s t r i n g ( P ) ;

10 temp = " Resul t s/"+p+"−" ;
11 std : : s t r i n g r e s u l t s ;
12 std : : s t r i n g times ;
13 t imes = temp + " time . dat " ;
14 char const ∗p_timings = times . c _ s t r ( ) ;

Listing 2.1: Extract from main.cpp. The program accepts parameters
from command line and gives proper names to outputs for
future convenience.
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2. The analysis routine, also written in C++, with the same input
parameters ability as before, whose output is, according to input
specifications, common statistical operations on big sets of num-
bers (mean, variance..). All this numbers are managed through a
special class called “Statistica”.

1 double tmp=0 ;
2 S t a t i s t i c a aggregator ; //Simple c o n s t r u c t o r f o r ob j
3

4 i f ( input . is_open ( ) ) { //input ’ s an i f s t r e a m from s t d l
5 while ( ! input . eof ( ) ) {
6 input >> tmp ;
7 aggregator . add ( tmp ) ; //methods f o r mean e t c are p r i v a t e
8 }
9 }

10 input . c l o s e ( ) ;

Listing 2.2: File reading happens with a simple cycle thanks to a
specific method of the object Statistica.

3. A script written in BASH that conveniently calls the two previous
programs. This script controls every input parameter of the main,
such as the dimension of the space in problem EBMP, but also the
Monte Carlo side, i.e. the number of instances to be computed at
fixed parameters.

1 # ! /bin/bash
2

3 INST=1000 #Number of i n s t a n c e s of the problem
4 NSTART=2000 # S t a r t i n g s i z e
5 NFINISH=5000 # Target s i z e
6 STEP=1000 # Step
7

8 f o r ( (D=1 ; D<=10 ; D++) ) #Dimension of the space − EBMP
9 do

10 f o r ( ( d=1 ; d<=INST ; d++) )
11 do
12 ./ l a p j v $ {NSTART} $ { NFINISH } $ { STEP } $ {D} $ {D}
13 echo −en ’Work in progress with D=P= ’ $ {D} ’ . . ’ $ ( (

100∗$ { d}/ $ { INST } ) ) ’% done . \r ’
14 done
15

16 f o r ( ( k=NSTART; k<=NFINISH ; k+=STEP ) )
17 do
18 ./ a n a l i s i $ { k } $ {D} $ {D}
19 done
20 done

Listing 2.3: The script that controls execution can be also be fed by
command line.

This approach proved particularly effective because it was possible
to execute the program on the cluster with shared filesystem LCM in
Milan’s Physics department.

In this setting one can concurrently execute the program on different
nodes at fixed parameters, the output being written on the “same”
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Figure 10: Distribution of execution times at sizes n=50 (blue), n=75 (green)
and n=500 (red). Each histogram has 105 entries and the mean
execution time is signaled by a small black arrow.

file with no more actions needed. Aggregation is done at the end of
computation, when all running instances of the program have been
completed by the nodes involved.

Coming to benchmark, a set of numerical tests were performed on
the same machine, mounting an Intel Q9550 working at 2.83 GHz with
4GB of RAM.

The focus here is on the distribution of execution times at fixed pa-
rameters (a measure of how well the algorithm runs near his best-case
execution) and of course on algorithm complexity. Having the physical
model in mind these aspects are far from trivial: one expects for exam-
ple a performance degradation in presence of high degeneracy, such
as for P = 1 in the one dimensional EBMP, where a lot of comparisons
are necessary during the augmentation phase.

This survey has shown some features that is worth visualizing and
discussing.

First, the distributions of execution times at fixed parameters (such
the ones in figure 10) is well unbalanced in his left tail, showing that
the majority of executions stops near the best scenario, at least when
the matrices size is < 500. These unbalanceness seems to gradually
disappear at increasing n.
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Figure 11: Average execution time as a function of the size N in three typical
scenarios encountered in the work.

Second, the average time per execution (figure 11) stands between
O
(
N2 logN

)
and O

(
N3
)

throughout the accessible range, showing
that, at least in the class of matrices involved in these kind of prob-
lems, this algorithm runs faster than the classical Hungarian algorithm
Kuhn, 1955 (see Burkard and Çela, 1999 for a survey).

It emerged also that an instance of the frustrated (or Euclidean)
model –blue and green points in figure 11– is completed in general
slower than the completely random problem –the red points–, the per-
formances improving at increasing dimensions; the upper black line is
t = 2.8 · 10−11N3.
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3.1 introduction

As noted in the previous section, where the formulation is com-
pletely general, a single specific instance of an assignment problem
is completely defined by the cost matrix w. Of course in a number of
applications the cost matrix has an experimental origin. For example,
in the scheduling of a switcher with n inputs and n outputs, it is useful
to assign inputs to outputs in order to minimize latency. In this case
the cost matrix is given by the switch’s manufacturer.

In this way, making an analogy with the objective function of eq (8),
it is possible to speak about a total cost of the assignment (Sn is the
symmetric group on n elements)

Cn(π;w) =
n∑
i=i

wiπ(i) π ∈ Sn (11)

23
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that has the meaning of an “energy”. Thus a partition function can be
defined as

Zn(β;w) =
∑
π∈Sn

e−β
∑n
i=1wiπ(i) (12)

where, upon explicitation of the sum over the n! configurations, there
is no entropy term. Moreover, to elucidate that (12) depends on the
“frozen” disorder w, a semicolon is used. We may summarize all nu-
merical investigations of this thesis work in the study of what happens
to (11) when n → ∞ (the ‘thermodynamic limit’). This thesis work
focused on two problems:

random assignment problem
Consider a random variable η uniformly distributed in [0, 1]. De-
noting its density by ρη(y) = χ[0,1](y), the r.v. x = ηq has density

ρq(x) =


1
qx

1
q−1χ[0,1](x) if q > 0

δ(x− 1) if q = 0
1
qx

1
q−1χ[1,+∞)(x) if q < 0

(13)

The “random assignment problem” deals with studying what
happens under these assumptions to (11) in the n → ∞ when
each of the entries of the weight matrix wij is a random variable
with density (13).

Differently stated, given a complete bipartite graph Kn,n, we are
assigning each of its n2 links a random weight with density (13)
and searching for the minimal total weight perfect matching as
well as corrections to this scaling regime as n→∞.

Comparing results with literature, it is convenient to define the
exponent

r =
1

q
− 1 (14)

This equation admits an interesting generalization as shown in
eq. (3.5.1).

Adopting this convention, density (13) has finite moments for
r > −1 (∀q > 0), while, when r < −1 (q < 0), the highest defined
moment is the n-th, with n = b−(r + 1)c. In this way, where
defined, the moment generating function is

ρ̃r(k) = E[exk] =

∞∑
n=0

r+ 1

n+ r+ 1

kn

n!
≡ 1F1(r+ 1; r+ 2;k) (15)

euclidean bipartite matching problem
Euclidean Bipartite Matching Problem (EBMP) is a linear assign-
ment problem where the focus is placed on matching n points of
a certain type {bi}

n
i=1(the “blacks”) to n points of another type{

wj
}n
j=1

(the “whites”).
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In particular blacks and whites form the partite sets of Kn,n, and
are all randomly distributed in some Euclidean space.

In graph theoretical terms, we are moving the randomness from
links to vertices. Again one studies the scaling behavior of some
optimal configuration, the difference being that this disordered
system is also frustrated (for example by the triangular inequal-
ity).

In this work all points are chosen uniformly in the D-dimensional
hypercube of side 1 CD, or in the D-dimensional torus Td. Each
of these two cases is completely specified by choosing the metric.

More precisely, the D coordinates of a point are r.v. with density

ρxi(y) = χ[0,1](y) (16)

and the distance d(bi, wj) between point bi and the point wj is√√√√ D∑
k=1

(
min
{
|(bi)k − (wj)k|, 1− |(bi)k − (wj)k|

})2 on TD

√√√√ D∑
k=1

(
(bi)k − (wj)k

)2 on the hypercube CD = XDi=1[0, 1]

(17)

In the EBMP the general cost matrix appearing in (11) is com-
pletely specified by

wij = d(bi, wj)P (18)

In this problem it is interesting to study expression (11) in the
thermodynamic limit n→∞.
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3.2 random assignment problem

3.2.1 Background

The possibility to deal with a combinatorial optimisation problem
using methods borrowed from the statistical mechanics of disordered
systems was first exploited in the pioneering article Mézard and Parisi,
1985, where the random monopartite matching problem is studied.
This problem is very similar to RAP, except for the fact that all the
2n points belong to the same class.

As stated in the ach matching of the complete graph K2N has an
energy depending on the realization of the frozen disorder; among the
many interesting questions about properties of optimal configurations,
one may be interested in the configuration realizing the ground state
level, or its energy.

In complete analogy with eq. (13)) the energy of a matching is de-
fined as

E
({
nij
})

=
∑

16i<j62N

nijlij (19)

where, in Mézard and Parisi convention, lij has density ρ(x) = xre−x

r! .
By expliciting the matching constraint the partition function is

Z(β,N; l) =
∑

{nij=0,1}

2N∏
i=1

δ(1−

2N∑
j=1

nij)

 e−βE({nij})
=
∑

{nij=0,1}

2N∏
i=1

(∫2π
0

eiλi(1−
∑2N
j=1nij)

dλi
2π

)
e−βE({nij})

=

2N∏
i=1

(∫2π
0

dλi
2π
eiλi

)∏
j<k

(
1+ e−βljke−i(λj+λk)

)

=

2N∏
i=1

(∫2π
0

dλi
2π
eiλi

)1+∑
j<k

ujk +
∑
j<k
l<m

ujkulm + . . .


(20)

where:

• from the second to the third line the integral representation of
the δ function has been introduced and the sum over the config-
urations has been performed

• from the third to the fourth line the definition

uij(β) ≡ e−βlij−i(λi+λj) (21)

has been introduced.

sec:RAPvsEBMPintroduction#introduction.e
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Before proceeding any further some comments are in order.

1. It is possibile to define an energy density for this model, hop-
ing that its thermodynamic limit is independent of the particular
disorder realization

f(N) = N
1
r+1−1F(β(N)) (22)

To ensure the existence of a non trivial thermodynamic limit it is
necessary that the inverse temperature satisfies β = β̂N

1
r+1 .

Even if, as stated in Houdayer et al., 1998, it can be proven that
the distribution of (22) peaks around some value when N → ∞,
this is not sufficient to prove convergence in probability. Indeed,
to prove self-averageness, it has to be proven that (22) tends in
probability to a constant independent of the realization, depend-
ing at most on the parameter r;

2. it is the behavior of disorder’s distribution near the origin that
fully determines the limit value of the average optimal cost at
zero temperature. A simple argument of proximity shows that
the typical nearest neighbor can be found at distance 1

N
1
r+1

.

Hence there is no difference in choosing such distribution as a
uniform r.v. on [0, 1] or as an exponential r.v. with intensity 1, as
in fact it has been done. Of course, the precise choice of disorder
distribution is relevant at finite N.

The computation may be sketched as follows. In the so called replica
method one computes the free energy via the identity

log x = lim
n→0

xn − 1

n
(23)

By substituting x = Z and integrating over ρ(lij) the averaged free
energy (i.e. left hand side of equation (23)) can be computed directly
as the limit n → 0 of a system of n non-interacting replicas (from the
Latin replicare, to “fold once again”) of the initial system.

To see how this happens consider the expression

Zn(β,N; l) =
n∏
a=1

2N∏
i=1

(∫2π
0

dλai
2π

eiλ
a
i

)
n∏
a=1

1+∑
j<k

uajk(β) + . . .


(24)

where now for each of the n replicas it has been defined the quantity

uaij(β) ≡ e
−βlij−i(λ

a
i +λ

a
j ) (25)

Since the average of (24) with respect to disorder distribution factorizes
on each link∫∞
0

dlij
lrij

r!
e−lij

n∏
a=1

(
1+ uaij(β)

)
= 1+

1

N

n∑
s=1

1(
β̂s
) 1
r+1

n∑
a1,...as=1
a16...6as

s∏
r=1

uarjk

(26)
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so that it can be performed to give

Zn(β,N; l) =
∫ n∏
s=1

∏
a1<...<as

dQa1...as
N(s,N)

·

· e
N

− 1
2

n∑
s=1

(sβ̂)r+1
∑

a1<...<as

Q2a1...as + 2F(1,Q)


(27)

where N(s,N) is a proper normalization constant coming from gaus-
sian integration and F(1,Q) is the free energy associated to the partition
function at temperature one

z(1,Q) =
n∏
a=1

(∫2π
0

dλai
2π

eiλ
a
i

)
e

n∑
s=1

∑
a1<...<as

Qa1...ase
−i(λa1+...+λas)

(28)
The saddle point equation for eq. (27) (N→∞) is

Qa1...as =
2(

sβ̂
)(r+1) 〈e−i(λa1+...+λas)〉z (29)

where 〈. . .〉z is the average with respect to partition function (28).
The replica symmetry hypothesis consists in assuming that tensor Q

satisfies Qa1...as ≡ Qs. By defining

Ψr(η) =

∞∑
s=1

(−1)s−1
Qse

sη

s!
(30)

the saddle point equation may be written in term of Ψr(η). In the
β̂→∞ limit the free energy density is

Er|T=0 =
β→∞ (r+ 1)

∫+∞
−∞ Ψr(s)e−Ψr(s) ds (31)

where Ψr satisfies the following integral equation

Ψr(η)

2
=

∫+∞
0

sr

r!
e−Ψr(s−η) ds (32)

In case r = 0 an exact solution is possible. Indeed differentiating
twice equation (32) with respect to η shows that Ψ ′′0 (η) is an even func-
tion satisfying

Ψ ′′0 (η) = Ψ
′
0(η)Ψ

′
0(−η) (33)

on all R. Thus Ψ0(x) +Ψ0(−x) = c1 so that

Ψ ′′0 = Ψ ′0(c1 −Ψ
′
0) (34)

which, integrated one time from 0 to η gives

Ψ ′0(η)e
Ψ0(η) = Ψ ′0(0)e

Ψ0(0)ec1η
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By defining the function φ0(η) = eΨ0(η), and integrating again

φ0(η) −φ0(0) =
φ ′0(0)

c1
(ec1η − 1)

Three relations are required to find the three unknowns. The first is

1

2
(Ψ0(η) −Ψ0(−η)) =

∫η
−η
e−Ψ0(t) dt = 2ηe−Ψ0(0) (35)

so that

1

2
c1 ≡

1

2

(
Ψ ′0(η) +Ψ

′
0(−η)

)
=2e−Ψ0(0)

(36)

This constraint implies φ ′0(0) = 2. The second and the third constraints
come as a result from observing that

φ ′′0 (0) = φ
′
0(0)

2

a relation that implies c1 = φ ′0(0). Indeed, inserting Ψ0(η) = logΦ0(η)
in (35) fixes also Φ(0) = 2. In conclusion

Ψ0(η) = logφ0(η) = log(1+ e2η)

In this way the ground state energy can be computed exactly. It is

E0|T=0 =
1

2

∫+∞
0

s

es − 1
ds

=
1

2

+∞∑
n=0

∫+∞
0

e−(n+1)ss ds

=
1

2

+∞∑
n=0

d

dn

1

n+ 1
e−(n+1)s

∣∣∣∣+∞
0

=
1

2

+∞∑
n=0

1

(n+ 1)2
=
π2

12

(37)

This last computation is very similar to the ones emerging in the study
of the specific heat of solids, for example in the Debye model at low
temperature.

At the end of Mézard and Parisi, 1985 is also observed that, by ap-
plying the same method of resolution on the bipartite case –which is
the case studied in this work– very similar calculations are obtained,
the relevant ground states energies being 2

1
r+1 times larger.

In the RAP context it is placed a famous conjecture (Parisi, 1998)
about the average optimal at a finite size n, when quenched disorder
is distributed exponentially with mean 1. This appealing conjecture
stated that

〈Cn(π∗)〉 = ζn(2) ≡
n∑
k=1

1

k2
(38)
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where ζn(s) is the truncated Riemann zeta function.
Looking into the state of the art about random links problem, in

Brunetti et al., 1991 both the monopartite and bipartite matching prob-
lems are considered, with numerical results for both averaged optimal
cost and finite size correction, confirming to very high precision the
predictions of the original article mentioned above.

An extensive numerical investigation on the RAP is Lee and Orlin,
1993: thanks to an algorithm called “QuickMatch”, based on the algo-
rithm of section 2.2.2, they were able to compute the optimal matching
on K2·106,2·106 , and on a bipartite graph with as much as 1012 edges.

Another previous analysis of the random monopartite and bipar-
tite matching problem is the already mentioned one Houdayer et al.,
1998, where also a power law distribution of the type (13) for costs is
assumed (apart from a normalization that will be discussed later, re-
mind that d = r+ 1). In this work a comparison of the distribution
of costs in the mean optimal configuration in both monopartite and
biparite case is presented.



3.2 random assignment problem 31

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0 0.005 0.01 0.015 0.02 0.025 0.03

〈C
n
(π
∗ )
〉n

1
r
+
1
−
1

1/n

r=3

r=2

r=1

r=0

r=0.2

r=0.5

r=0.75

r=-0.2

Figure 12: Each point in this figure is the mean value of at least 104 sim-
ulations. As shown in the key, every color corresponds to a
different RAP, each completely specified by the value of r. Ex-
trapolation have been performed for every color via expression
(39); it was possible to merge three different scales of the size of
the system, n: n ∈ S1 = (10, 100) , n ∈ S2 = (100, 1000) , and
n ∈ S3 = (1000, 12500) . Notice that, since every straight line that
fits points has negative slope, all coefficients of the 1

n corrections
in (39) is negative.

3.2.2 Numerical findings

A huge amount of simulations has been performed in order to ver-
ify if the quantity defined in (22) peaks itself around some disorder
independent limit, especially in the region r < 0, where no numerical
value in the literature is available.

Consequently to the considerations made in 3.2.1 the fitting function
is chosen as

n
1
r+1−1〈Cn(π∗)〉 = wr

(
1+

A(r)

n
+
B(r)

n2

)
(39)

(recall that Cn is defined in (11), π∗ ∈ Sn realizes the minimum and
〈· · · 〉 is the sample mean over the disorder, distributed according to
(13). After a proper rescaling, due to the different conventions found
in the literature, a good agreement with is found, as resumed in table
1. These results, under the rescaling of a factor 2

1
r+1 mentioned in

the previous paragraph, matched also very well the one presented in
Mézard and Parisi, 1988 for r = 1 and r = 2.
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r Lee and Orlin, 1993 Houdayer et al., 1998 wr

0 1.64474 1.64536 1.64494(9)
1 1.61786 1.61718 1.61698(8)
2 1.9139 1.91474 1.91456(7)
3 2.2658 2.26455 2.26430(9)

Table 1: A pletora of different normalization conventions has been used to
study the random assignment problem. This requires a proper
rescaling of the coefficients involved–their meaning being discussed
in section 3.5–. This done, agreement with previous numerical inves-
tigations is quite good.
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r wr

-13 2.2549(6)
-0.2 1.8846(3)
-0.1 1.7357(3)

0 1.64494(9)
0.1 1.5886(2)
0.2 1.5564(1)
0.25 1.5458(1)
0.3 1.5391(2)
0.4 1.5331(1)
0.5 1.53525(8)

r wr

0.6 1.5440(2)
0.75 1.5654(1)
0.9 1.5945(2)
1 1.61698(8)

1.2 1.6682(2)
1.5 1.7545(1)
1.75 1.8324(1)

2 1.91456(7)
2.5 2.0864(1)
3 2.26430(9)

Figure 13: All results obtained simulating RAPs. wr is defined in eq. (39)
and errors on the last digit is between parentheses.
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r A(r)

-13 -3.71(5)
-0.2 -3.03(2)
-0.1 -2.68(4)

0 -2.40(1)
0.1 -2.14(2)
0.2 -1.95(2)
0.25 -1.85(1)
0.3 -1.80(2)
0.4 -1.61(1)
0.5 -1.52(1)

r A(r)

0.6 -1.41(2)
0.75 -1.27(1)
0.9 -1.18(2)
1 -1.09(1)

1.2 -1.01(2)
1.5 -0.85(2)
1.75 -0.76(1)

2 -0.692(8)
2.5 -0.57(1)
3 -0.470(7)

Figure 14: All results obtained simulating RAPs. A(r) is defined in eq. (39)
and errors on the last digit is between parentheses.

With respect to the exponential fit for the coefficient A(r) defined in
(39) and presented in figure 14, it is worth noting that the point at r = 3
would have been improperly fitted without the exponential correction
at numerator. However, since the exponent is really small (∼ 0.0755),
we cannot take out the chance that the expansion in r of numerator is
finite.

To prove this two assumptions a simulation for very high values of
r would be needed.



34 random assignment vs euclidean bipartite matching

3.3 one dimensional euclidean bipartite match-
ing problem

3.3.1 One dimensional case with open boundary conditions

Exact formulas for the convex case in both the interval (0, 1) and S1

can be found in Caracciolo, Sergio and Sicuro, Gabriele, 2014, where it
is shown that the average optimal cost can be computed as a particular
expected value over the stochastic process called “Brownian bridge”.
This link allows also a study of the correlation functions in these cases.

The link with the Brownian bridge as well as properties of the op-
timal matching for both convex and concave cost are established as
theorems in Boniolo et al., 2014; a continuum analogue of this problem
in the framework of measure theory, called the Monge-Kantorovich prob-
lem, with strictly concave cost, has been studied previously in McCann,
Robert, 1999. In the next section a brief summary of these results will
be presented; a review of the general Monge-Kantorovich problem in
measure theory is postponed to 3.4.

3.3.2 Some remark on the properties of the optimal matching for the
EBMP in one dimension

In this section is presented a brief literature review of known results
of the one dimensional Euclidean matching problem. These well es-
tablished results were used to check consistency check of the code of
section 2.4. Some possibly new –to the best of author’s knowledge– nu-
merical investigation in the concave P ∈ [0, 1] and negative P ∈ [−1, 0]
cases are then discussed without the possibility to check their sensible-
ness.

Consider a particular realization of n whites and n blacks. Among
the many ways in which we may visualize a matching, one is drawing
n points in the first quarter of a Cartesian plane, one for each of the
n arcs in the matching, its abscissa and ordinate being respectively
the abscissa of the black and of the white point that define an arc. A
convenient definition follows.

Definition 3. Given a particular matching π ∈ Sn between n black
points {bi}

n
i=1 and n white points

{
wj
}n
j=1

, the path of the matching
(or matching path) is the unique piece-wise linear function that passes
through the points Pi = (bi,wπ(i)) ∈ R+ ×R+, the n representatives
of each arc composing a matching.

A strictly convex cost is a lower bounded function c : D → R that
satisfies

c (tx+ (1− t)y) < tc(x) + (1− t)c(y) t ∈ [0, 1]
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x

(a) A matching for n = 3

x1

x2

(b) The corresponding path

Figure 15: The matching path construction in the one dimensional convex case
with open boundary conditions.

This property, which is true if and only if c(x) has monotone increasing
increments, provides a characterization of the optimal matching in the
case P > 1 for cost (18) in D = 1.

Lemma 2. An optimal matching for a strictly convex cost is non-decreasing,
i.e. its associated matching path has positive difference quotients.

Proof. On the contrary, suppose that a matching path has at least one
of its pieces with negative slope, say wi+1−wi

bi+1−bi
< 0, where bi (resp.

bi+1) is matched to wi (resp.wi+1).
We may suppose without loss of generality that bi < bi+1, in which

case necessarily wi+1 > wi. In this way the two points x1 = bi −

wi+1 and x2 = bi+1−wi belong to the interval (bi−wi+1,bi+1−wi);
moreover, viewed as a convex combination of these two extrema, they
are symmetric in the exchange t 7→ (1− t). By the strict convexity of
the cost function follows that

c(bi,wi+1) + c(bi+1,wi) < c(bi,wi) + c(bi+1,wi+1)

which shows that the matching is not optimal.

Note that there is a one-on-one correspondence between changes of
sign of wπ(i)−bi and crossing points between the respective matching
path and y = x.

It is also clear that for costs of the type 18 the optimal solution is
unique, since any exchange implies a negative difference quotient on
its path, thus strictly raising the total cost; moreover, if we adopt the
statistical mechanics picture, at fixed realization of the disorder –by
the monotonicity of the function xP– the optimal solution is the same
∀P > 1.

This lemma provides also a recipe that greatly simplifies the numer-
ical analysis of one dimensional EBMPs: starting from a given realiza-
tion of the disorder, it is sufficient to sort separately the n whites and
the n blacks, the optimal solutions at every fixed instance is the one
in which the leftmost black point is matched with the leftmost white
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point (in the language of permutations, we’re stating that the optimal
map after sorting is the identity π(i) = i, ∀i = 1, . . . ,n).

For example, in this thesis the sorting task is accomplished by the
use of classical recursive “quicksort”, a fact that lowers the compu-
tational complexity from O(n3) –worst case scenario of algorithm of
section 2.3.2– to O(nlogn), allowing the simulation of systems of size
up to 108.

In the case with open boundary conditions and strictly convex cost
it was showed in Boniolo et al., 2014 that it is possible to proceed even
further: in the so-called “grid-Poisson” setting, the n white points are
fixed at positions i

n , i = 1, . . . ,n while the blacks are again uniformly
chosen at random.

In the g-P EBMP the probability for the i-th black to be found in the
interval [y,y+ dy] is

P(yi ∈ dy) =
(
N

i

)
yi(1− y)N−1 i

y
dy

The rescaled distance of a black to its optimally matched white

µ(y) :=
i√
n
−
√
ny (40)

in the thermodynamic limit n → ∞, as proved in Caracciolo, Sergio
and Sicuro, Gabriele, 2014, is distributed according to

ρ(µ(y)) =
1√

2πy(1− y)
e
− µ2

2y(1−y)dµ

which is the distribution of the Gaussian stochastic process called the
Brownian bridge By with y ∈ [0, 1] (see A.2.1 for a brief review of its
properties). Defining now

Φ(x) =
2x√
π
B(x+ 1, x+ 1)Γ

(
x+

1

2

)
(41)

where B(x,y) and Γ(x) are the usual Euler’s Beta and Gamma func-
tions, the mean cost averaged over the disorder 〈C〉 is given by

E|µ(y)|P = n−P
2Φ

(
P

2

)
P > 1

It is worth noticing that, when P 6 1 (not strictly convex case) the
optimal matching is in general not ordered (i.e. the corresponding
matching path fails to be non-decreasing), preventing the construction
of a transport field of the type µ(y) of eq. (40). Already at fixed
disorder realization the optimal matching is qualitatively very different
from the optimal matching that realizes the minimum in the strictly
convex case. The following lemma, as the previous one, is inspired by
analogue results in the continue transport theory in McCann, Robert,
1999, and shows some property of the optimal matching in the strictly
concave case.
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Lemma 3. If the cost c is an increasing strictly concave function

c (tx+ (1− t)y) > tc(x) + (1− t)c(y) t ∈ [0, 1]

the following two properties hold:

• the optimal matching is uncrossing.

• the optimal matching satisfies the “rule of three”, that is, in a nested
configuration whose matching path crosses y = x a certain area is
forbidden.

Proof. The uncrossing property of the optimal matching is exactly what
is expected by linking the points in the configuration, ad done in 16a;
this property can be proved with an argument completely analogue to
the one used in lemma (2).

To state and prove the rule of three consider figure 16a, which catch
the possible nested matchings with reverse order of the arrow: these
are the two only possible orderings that are both uncrossing and in-
cident with the bisector (in the sense that their matching path does
intersect y = x). Assume bj 6 wπ(i) < bi 6 wπ(j) (as the blue cou-
ple of matchings in figure 16a) is optimal. Obviously c(bi,wπ(i)) =

c(bi, 2bi −wπ(i)), but, since the cost is increasing, it is also clear that
c(bj,wπ(i)) < c(bj, 2bi −wπ(i)). In this way from the optimality con-
dition follows

c(bj, 2bi −wπ(i))) + c(bi,wπ(i)) < c(bi,wπ(j)) + c(bj, 2bi −wπ(i)))

Necessarily bj < 2bi −wπ(i) < wπ(j) (otherwise the two blue arrows
in the figure would cross violating the uncrossing rule). With the same
argument one proves the other possibility, namely bj < 2wπ(i) − bi <
wπ(j)

In McCann, Robert, 1999 the last part of this lemma is pictorially
stated as follows: if one considers the two circles O(wπ(i),bπ(i)) and

x

(a) A matching for n = 4 exhibiting
nesting.

x1

x2

(b) The matching path corre-
sponding to 16a.

Figure 16: If arc A is nested in arc B, then A’s representative point is closer
to y = x than B’s.
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O ′(wπ(j),bπ(j)) having respectively wπ(i) and bπ(i) (wπ(j) and bπ(j))
as antipodal points, in the optimal matching if O ′(wπ(j),bπ(j)) en-
closes O(wπ(i),bπ(i)), then it encloses also the circle

O ′′(2bi −wπ(i), 2wπ(i) − bπ(i))

whose diameter is three times the diameter of O ′(wπ(j),bπ(j)).
It is possible to look at the construction of the matching path of

the optimal configuration also in a “dynamical way”. Starting from a
certain point of the path Pt = (xt,yt), where is it possible to find the
next one Pt+1 = (x,y) in the optimal matching?

In the convex case the answer to this question is simple: since the
matching path is non-decreasing, it is

Pt+1 ∈H+, H+ = {( x,y) ∈ [0, 1]× [0, 1] | x− xt > 0∧ y− yt > 0}

i.e. the blue shaded area across y = x in figure 17. It is readily seen that
∀t this rectangular accessible region, which is also simply connected, is
uniquely identified by the actual position of Pt.

x

y

Figure 17: The accessible region for an op-
timal configuration in the con-
vex case (the light blue rectan-
gle [0.5, 3] × [1.25, 3]) differs from
the accessible region in the con-
cave case (quadrilateral accross the
bisector ∪[1.25, 3] × [1.25, 3], both
shaded in red).

On the contrary in the
concave case a different
situation occurs. The two
constraints of lemma 3 are
non local, in the sense that
the accessible region for
Pt+1 given Pt “splits up”
in two disconnected sub
regions, one accessible if
the arc which Pt+1 rep-
resents is outside the arc
represented by Pt, and the
other if it is instead nested
inside, so that the acces-
sible region is not simply
connected.
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3.3.3 Numerical results in the one-dimensional case

The quality of numerical investigation in the convex case with OBC
was checked against analytic predictions of eq. (41), both using and
non-using the ordering trick described in the previous section. This
test confirmed also very well that the average optimal cost scales as
n−P

2 when n → ∞, as it should be by the Brownian bridge correspon-
dence, while a different asymptotic beahvior for these quantities is
strongly supported by numerics in regions of the space of parameters
where analytic predictions are not available1.

In particular in the concave (P ∈ [0, 1]) and negative (P ∈ [−1.1, 0])
cases there is strong numerical evidence for a deviation of the scal-
ing exponent of the optimal cost averaged over the disorder from the
convex regime. The extrapolation of the data is done via the relation

CP ∼
〈
C
(P)
n

〉
nε+

P
2−1 n→∞ (42)

the value of ε representing the deviation from the convex case; the
results, which are collected in table 2 and plotted in figure 18, are
obtained with a simple fit, whereas each value at fixed n is the mean
of at least 104 realizations of the disorder.

P Cp ε

-1.1 2.17(1) 0.552(1)
-0.9 1.887(2) 0.4517(2)
-0.75 1.702(4) 0.3767(4)
-0.5 1.422(3) 0.2507(4)
-0.4 1.325(1) 0.2005(1)
-0.3 1.235(2) 0.1504(2)
-0.2 1.148(1) 0.10006(5)
-0.1 1.0728(2) 0.05013(2)

P Cp ε

0.1 0.927(2) 0.0474(3)
0.2 0.879(5) 0.0908(8)
0.3 0.811(7) 0.121(1)
0.4 0.777(8) 0.147(2)
0.5 0.714(1) 0.155(3)
0.6 0.627(1) 0.149(3)

0.75 0.489(5) 0.104(2)
0.9 0.376(5) 0.044(1)

Table 2: Summary of the results for P ∈ [−1.1, 11].

P Cp Φ
(
P
2

)
1 0.321(3) 0.313328

1.1 0.288(1) 0.289102

1.5 0.217(1) 0.218591

2 0.167(1) 0.166666

3 0.1175(5) 0.117498

5 0.096(3) 0.097915

7 0.123(5) 0.128513

11 0.55(3) 0.530118

1 Except from the results for correlation functions when P ∈ [0.75, 1] presented in Bo-
niolo et al., 2014).
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(b) Deviation from the scaling regime of the convex case.

Figure 18: Plot of the results presented in table 2.
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3.4 ebmp in general dimension

The EBMP in D > 1 was also intensively studied, both in his scaling
behavior and, more recently in its subleading corrections. This model
showed some rich feature that it is worth discussing with a cronologi-
cal point of view.

In Mézard and Parisi, 1988 was observed that once 2n points –n of
one type and n of the other– at fixed volume are given, the measure
of the typical region in which a point of one type sees the nearest
point of the other type is of the order ∼ 1

n , or, restated differently,
that the typical distance between nearest neighbors in D dimensions
scales as 1

n1/D
. Hence one expects that (11) scales as n1−

P
D in the

thermodynamic limit.
In fact this argument was rigorously stated for D > 3 and for every

norm in Talagrand, 1992. This argument is extensively used in the
following.

Moreover it was proved in Ajtai et al., 1984 that in the bipartite case
in D = 2 a logarithmic sub-leading correction comes out, the first cor-
rection to scaling behavior of a functional of the type (11) (apart for an

unessential 1n ) with costs defined in (18) being O
((

logn
n

)P
2

)
.

So a major point comes out: the sub-leading corrections in the monopar-
tite and bipartite cases seems to differ. In fact in Houdayer et al., 1998

it is showed (and numerically confirmed) that the first correction to
the scaling behavior is of the order 1n .

Whereas in the monopartite case, where all points are of the same
type, the argument of proximity can be repeated at arbitrary small
scales around a fixed position by increasing consistently n, in the bi-
partite case at low dimensions long range coupling of points may be
necessary to realize the optimum frustrating the system.

The role of the local fluctuations of the density of points of the same
type was at the heart of the ansatz proposed in Caracciolo, Lucibello,
et al., 2014, in which it is predicted that the relevant exponent of the
sub-leading correction is

γD =
D− 2

D
(43)

Since this result will play a crucial role in the following, this may be
the place for a brief recall of the reasoning behind it, of course refering
the interest reader to this paper for details.

The motivation for this ansatz comes from the continuous version of
the euclidean bipartite matching problem, called the Monge-Kantorovich
problem, for which a lot of rigorous results were proven (see for exam-
ple Evans and Villani).

Consider for example two non negative measures with equal finite
mass µ+,µ− : TD → R+, where TD is the standard D-torus obtained
identifying opposite sides of the unit cube in D dimensions.
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One can study the properties of certain measure preserving maps
M∗ : TD → TD, that is, a map such that ∀f ∈ C1

(
TD
)
,∫

sptµ+
f (M(x)) dµ+(x) =

∫
sptµ−

f(x)dµ−(x) (44)

which, if the measures have densities, is equivalent to the “change of
variables” formula

µ+(s) = µ− (M(s))det JM(s) ∀s ∈ TD (45)

where JM(s)ij =
∂Mi

∂sj
is the Jacobian of the transformation. One then

searches for minima of the work functional

W [M; c] =
∫

TD
c(x,M)dµ+(x) (46)

where c : TD ×TD → R+ is a positive definite function called the cost.
When c(x,y) = ‖x− y‖2 it was proved in Evans, 1997 that the op-

timal map M∗ admits a convex potential φ∗. Inserting this result in
equation (45) and assuming µ+(y) = ρ+(y)dy and µ−(y) = ρ−(y)dy

shows that φ∗ satisfies the Monge-Ampère equation

ρ+(y) = detHφ(y)ρ− (∇φ(y))

Observe now that, by supposing M∗ = (1 +m(x)) x (where ‖m(x)‖ �
1 throughout the torus) and that the densities satisfy ρ+ = 1+ δρ+ and
ρ− = 1+ δρ− with again δρ+, δρ− small, equation (45) becomes

∆ψ = δρ (47)

which is the Poisson equation for the electrostatic potential ψ that gen-
erates (apart for a sign) the field m(x) = ∇ψ, given the distribution of
charges δρ = ρ+ − ρ−.

So at first order the the cost is given by the kinetic energy term

W2 [M] ∼

∫
TD
∇ψ(x) · ∇ψ(x)dx =

∑
n∈ZD\{0}

|δρ̂n|
2

4π2‖n‖2
(48)

where
δρ̂n :=

∫
TD
δρ(x)e−2πin·x dx

is the Fourier mode of δρ(x).
This analogy with electrostatics in the case of quadratic cost may be

stressed also from another point of view. Considering the two empiri-
cal measures

ρ+(x) :=
1

n

n∑
i=1

δ(D)(x−wi)

ρ−(x) :=
1

n

n∑
i=1

δ(D)(x− bi)

(49)
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where {wi}
n
i=1 and {bi}

n
i=1 are i.i.r.v. on TD. Upon defining the “trans-

port field” µbj(wi) := bj −wi one recovers the matching cost (18) if in
the functional

E[µ] =

∫
TD
‖µ(y)‖2ρ+(y)dy (50)

the field is subject to the constraint∫
TD
δ(D)(x− y− µ(y))ρ+(y)dy = ρ−(x)

which, roughly speaking, says that if one is located on a D-dimensional
black point, one can reach a white point (bijectively) by a translation
given by the transport field. In this way it is possible a formulation
of the quadratic EBMP introducing a certain Lagrange multiplier ψ in
the action

S[µ,ψ] :=
1

2
E[µ] +

∫
TD
ψ(x)

[
ρ−(x) −

∫
TD
δ(D)(x− y− µ(y))ρ+(y)

]
dx

=
1

2
E[µ] −

∫
TD
ψ(x)ρ(x) + ρ+(x) (µ(x) · ∇)ψ(x)dx+O

(
‖µ‖2ψ

)
(51)

where ρ(x) := ρ+(x) − ρ−(x) is again the density of charge (see equa-
tion (47) for comparison).

So imposing stationarity to the functional (51), at first order in the
norm of the transport field implies the coupled PDEs{

ρ(x) = ∇ · (η(x)µ(x))
µ(x) = ∇ψ(x)

(52)

where η(x) is the weak-limit n → ∞ of both ρ+(x) and ρ−(x), that is,
the distribution from which black and whites are extracted.

This is the classical electrostatic problem of finding the field µ(x)

generated by a globally neutral configuration of charges (the respective
distributions being the ones in (49)), in a medium with a stochastic
permittivity η(x). Note that the Lagrange multiplier ψ equals minus
the electrostatic potential.

This observation unlocks tools from Green’s function formalism, as
widely discussed in Caracciolo and Sicuro, 2015a and Caracciolo and
Sicuro, 2015b.

Consider the Fourier modes of δρ: by recalling the decomposition
(48) in the functional

EN[δρ̂] ≡
∑

n∈ZD\{0}

|δρ̂n|
2

4π2‖n‖2
(53)

captures the sub-leading corrections for the asymptotic behavior of (11)
or in other words,in the case P = 2 upon defining

n
2
D−1C(π∗) = e

(2)
D +O

(
n−γD

)
≡ β(2)

n D > 2
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it must be true that

β
(2)
n (D) ∼ n

2
D

∑
n∈ZD\{0}

|δρ̂n|2

4π2‖n‖2
= n−γD

∑
n∈ZD\{0}

1

2π2‖n‖2
(54)

where in the last equality the mean over positions of the points on TD

–denoted as · · ·– has been performed.
Formula (54), which is divergent in D > 2, was studied under a

proper regularization scheme in Caracciolo, Lucibello, et al., 2014. This
regularization gives the leading scaling behavior in D = 2 and both
the leading and sub-leading corrections mentioned before in D > 3, as
confirmed by their numerical results.
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Figure 19: Typical output encountered during the numerical studies. This
figure depicts the EBMP with PBC and shows the goodness of the
ansatz discussed in 3.4 (the inessential constant N(D,P) is defined
in equation (58)).

3.4.1 Numerical results in D > 3

As mentioned in the previous section a rigorous foundation of the
validity of ansatz (43) for arbitrary P has not yet been done. In the
same spirit of the concluding remarks of Caracciolo, Lucibello, et al.,
2014, it was chosen to simulate the EBMP in a Poisson-Poisson setting
(i.e. blacks and whites are i.d.r.v. in [0, 1]D, with PBC imposed.

Numerical results were fitted with a three parameter function

n
P
D−1〈Cn(π∗)〉 = e(P)D

(
1+

a
(P)
D

nγD
+
b
(P)
D

n2γD

)
(55)

at least in the case with periodic boundary conditions there is strong
numerical evidence that the γD ansatz holds for generic P.
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Figure 20: Zooming in figure
19.

Many comments are in order. In this
case there is a strong numerical evi-
dence for a change of sign of the quan-
tity a(P)D defined in (55)(or, possibly, of
a restriction of the scaling region where
ansatz (55) holds). A reasonable argu-
ment for a behavior of this kind is lack-
ing, the only observation being that a
limit optimal cost reached from above as
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shown in figure 20 opens the question
on how corrections in the frustrated sys-
tem reach their counterparts in the non-
frustrated model, which, as strongly suggested numerically from 14,
do have negative sign.

A more intriguing scenario with sub-leading corrections coefficients
having positive signs, and not well fitted with the γD scaling ansatz
emerged from the same problem with OBC. In this case the average
optimal cost as a function of the size showed two distinct regimes:

1. A transient region showing a peak at some n∗ 6 100. At fixed
dimension this maximum n∗(P) < n∗(P ′) if P < P ′.

2. An asymptotic region of very slow decrease towards the same
limit value e(P)D found by imposing periodic boundary condi-
tions. Even if this feature appeared very clearly upon plotting
results (an example of this plot is in figure 21), fitting data via
(55) proved inadequate.
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Figure 21: Comparison of the EBMP with P=D=3 (blue) and D=2P=3 (red).
For each case, both results with open and periodic boundary con-
ditions are depicted, the latter being respectively the blue and red
concave curves.
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3.5 rap as the mean field approximation of
the ebmp

3.5.1 General remarks

By noting that limD→∞ γD = 1 one can be interested in how the
results discussed in section 3.2 are recovered. Moreover, at low di-
mensions –as expected from the arguments discussed in the previous
section–, γD is fairly different from the exponent of the sub-leading cor-
rection in the Euclidean monopartite case (see Houdayer et al., 1998).

To properly compare the Euclidean bipartite matching problem, that
has cost (18) and the random assignment problem it is necessary to
normalize the distributions.

Observing that the probability density for a point in D dimensions
to find a neighbor at a certain distance x is simply the measure of the
D-sphere of radius x

ρD(x) =
2π

D
2

Γ
(
D
2

)xD−1 ≡ SD(x) (56)

In this way if x ∼ w
1
P , it follows that

ρD(x)dx = ρD(w
1
P )d

(
w
1
P

)
= SD(1)

w
D
P −1

P
dw := ρD,P(w)dw (57)

So by imposing equality on a small volume (subscripts R and E refers
respectively to the Random and Euclidean case) it must be true that

wrR
r!
dwR = ρD,P(wE)dwE

What this relation implies is the existence of a proper “renormalizing”
quantity depending only on D and P

N(D,P) :=
wR
wE

=

[
SD(1)Γ

(
D
P

)
P

] P
D

(58)

under the constraint
r =

D

P
− 1 (59)

These facts being cleared, to study how the mean field limit associated
to the parameter r is reached it was proceeded as follows:

• For each accessible dimension D, it was simulated an Euclidean
bipartite matching problem with cost (18), where

P = r(D+ 1)

.

Periodic boundary conditions were chosen due to the simpler be-
havior observed in reaching a thermodynamic limit (as shown in
21).
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• For every such problem, extrapolation in order to obtain the limit
average optimal cost is done via (55); this value is then multiplied
by (58). Thus, at fixed r, the typical output of a simulation is
similar to the one plotted in figure (19) (which refers to the case
r = 1).
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3.5.2 Numerical investigation

An extensive numerical simulation of the EBMP with periodic bound-
ary conditions was done in order to explore the connection to its mean
field limit D→∞, with the caveats mentioned in the previous section.
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Figure 22: Density plot for the surface of renormalized costs in the EBMP on
TD. Figure 13 is the section of this figure at 1D = 0.

Using the already mentioned fitting function (55) of section 3.5.1 it
was decided to reconstruct the bi-dimensional landscape of the renor-
malized optimal cost, that is, to plot its value as a function of both r
and D, with r and D constrained by (59).

At this point one can choose two approaches: the first is studying
the renormalized optimal cost at fixed dimension D as a function of
r, the expected qualitative trend being similar to the one in figure 13;
the other is to study this landscape in the orthogonal direction, where
one would expect sections at fixed r to have a qualitative decreasing
monotone trend when D increases, the intuitive idea being that the
optimal cost of a matching for the system constrained by euclidean
geometry should be higher at lower dimension and should attain its
minigm when frustration vanishes, i.e. in the completely random case.
In fact this turned out to be true.

Since in D = 2 a logarithmic correction appears for the Euclidean
bipartite matching problem (as discussed in Caracciolo, Lucibello, et
al., 2014), S.Caracciolo proposed a relation of the type

wr

(
1

D

)
= wr

(
1+ ur

1

D2
1(

1− 4
D2

)) (60)

the results of this fits are collected in table 4.
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aaaaaa
r D

3 4 5 6 7 8

-0.2 3.451(9) 2.5167(9) 2.220(2) 2.0827(5) 2.0159(8) 1.969(1)
-0.1 2.952(1) 2.402(4) 2.0071(9) 1.8984(8) 1.8420(5) 1.8053(4)
0 2.644(2) 2.0639(6) 1.8740(3) 1.7829(5) 1.7361(3) 1.7046(4)
0.25 2.240(2) 1.8502(6) 1.714(1) 1.6491(4) 1.610(2) 1.5920(7)
0.5 2.086(5) 1.776(8) 1.6177(4) 1.5895(3) 1.5713(9) 1.5595(2)
0.75 2.0206(4) 1.7670(7) 1.6789(2) 1.6345(2) 1.6117(4) 1.5951(7)
1 2.0117(6) 1.796(1) 1.7170(2) 1.6787(2) 1.6569(5) 1.6442(1)
2 2.1910(7) 2.0400(1) 1.9867(1) 1.95987(9) 1.9438(2) 1.9347(1)
3 2.4880(5) 2.3698(1) 2.32441(4) 2.3007(1) 2.2897(1) 2.2816(2)

aaaaaa
r D

9 10 12 15 ∞
-0.2 1.943(2) 1.925(2) 1.897(6) 1.889(4) 1.8846(3)
-0.1 1.7842(6) 1.764(1) 1.7490(2) 1.751(4) 1.7357(3)
0 1.6864(3) 1.6725(3) 1.6565(9) 1.6478(6) π2

6

0.25 1.5768(3) 1.5685(7) 1.554(1) 1.550(3) 1.5458(1)
0.5 1.5595(2) 1.5530(4) 1.5412(3) 1.5377(3) 1.53525(8)
0.75 1.5876(2) 1.5805(5) 1.5710(8) 1.568(1) 1.5654(1)
1 1.6355(4) 1.6312(8) 1.6238(8) 1.619(1) 1.61698(8)
2 1.9283(2) 1.9243(2) 1.9186(2) 1.9176(9) 1.91456(7)
3 2.2757(3) 2.2726(1) 2.2680(4) 2.2667(9) 2.26430(9)

Table 3: The numerics obtained in the study of the D→∞ limit. Each entry
of the table (except the ones corresponding to D = ∞) is obtained
via extrapolation with (55). The ePD obtained in this way (see (55) for
its definition) is re-scaled by the relevant N(D,P) defined in eq. (58).

Table 4: Results of interpolation with function (60). Each row defines a func-
tion; all 9 functions are plotted in figure 23.

r wr ur

-0.2 1.876(6) 3.8(1)
-0.1 1.718(6) 3.57(8)

0 1.640(3) 2.91(1)
0.25 1.544(2) 2.26(6)
0.5 1.524(2) 1.91(3)

0.75 1.564(1) 1.47(2)
1 1.611(1) 1.29(3)
2 1.913(1) 0.79(1)
3 2.263(1) 0.55(1)
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Figure 23: Slices at fixed r of figure 22 show that mean field predictions may
differ sensibly from Euclidean average optimal cost when r 6 0,
while in the r = 3 class the greatest deviation from mean field
AOC is 7%, achieved in D = 3.



52 random assignment vs euclidean bipartite matching

3.6 conclusions and future work

Both the random assignment problem and the Euclidean bipartite
matching problem have been studied by means of the Jonker-Volgenant
algorithm that solves the general linear sum assignment problem in
O(n3) time.

Results matched very well both theoretical predictions –where available–
and are consistent with numerical data previously known in the litera-
ture.

It is possible to summarize them as follows:

• In the random assignment problem, there is strong numerical ev-
idence of a peaking property for the re-scaled averaged optimal
cost throughout the whole region r ∈ [−1, 3]. The distribution
of these quantities proved to be very well fitted by gaussians dis-
tributions, but of course this is not sufficient to prove that they
are self-averaging. It was possible to extract coefficients of the 1

N

corrections, as showed in figure 14. Extrapolations of coefficients
for the 1

N2
corrections are less precise and require a deeper nu-

merical analysis.

• In the one dimensional grid-Poisson Euclidean bipartite match-
ing problem with open boundary conditions with cost (18) when
P > 1, simulations agrees to their last digit precision with an-
alytic predictions for the averaged optimal cost in the thermo-
dynamic limit computed as explained in Caracciolo, Sergio and
Sicuro, Gabriele, 2014; moreover, in the region P ∈ [−1.1, 1] where
the previous approach is not possible, and where to the best of
author’s knowledge no prediction for the AOC value has yet
been done, there is strong numerical evidence of a deviation from
convex scaling, these data being summarized in table 2.

• In the EBMP in D > 3 for general P, in the case with PBC, numer-
ical findings are in excellent agreement with the numerical data
found in Caracciolo, Lucibello, et al., 2014, strongly supporting
their scaling ansatz for the sub-leading correction; the coefficients
of these corrections showed an intriguing feature, being negative
at sufficiently low dimensions, and changing sign around D ∼ 10.

• In the EBMP in D > 3 for general P, in the case with OBC, again
numerical findings for the limit value of the average optimal cost
match very well their counterparts in the case with PBC. How-
ever in this case there is numerical evidence that signs of the 1

N

corrections stay positive throughout all the dimensions numeri-
cally investigated.
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• The relationship between the random assignment problem and
the Euclidean bipartite matching problem with PBC was numer-
ically studied. An entire bi-dimensional landscape was created,
this construction allowing a 1

D expansion for a renormalized Eu-
clidean AOC with respect to the Random assignment, this value
being reached when D→∞.

A first and general step to be implemented in order to deepen the study
of these disordered and frustrated systems may come from studying
correlation functions. Studying these quantities from the point of view
of critical exponent theory can shine light on how the quantities dis-
cussed in this work reach the thermodynamic limit together with their
sub-leading corrections.

It may be very interesting a numerical study of the distribution of
the costs in the optimal matching as a function of n. Accessing the
distribution of link’s weight in the optimal configuration –it may be
called an occupancy distribution– can shine light on the properties of
the ground states of such models and how their fluctuations behave
when n → ∞; already in the r = 0 class for the random assignment
problem, as shown in Mézard and Parisi, 1985, these distributions can
be far from trivial.

Moreover one can study how the sub-leading corrections coefficients
of the Euclidean bipartite matching problem reach the random assign-
ment corrections in the D→∞mean field limit: as shown in figure 20,
it is not clear how this can happen and why a change of sign should
happen. This phenomenon is more evident in the EBMP with open
boundary conditions.

A possible way to implement the featured mentioned is by means
of a careful rethinking of the optimisation procedure, which now can
only output the optimal cost but; a program for studying correlation
functions must be able to output the optimal matching at fixed disor-
der for every instance without penalizing (too much) performances.

Another plausible direction of future work is to extensively study a
general assignment problem weakening assumptions on the cost func-
tion, such as densities with unbounded support, such as the region
r < −1, where power law distributions of the type 13 come outside the
gaussian universality class.

Code updating is already in progress.





A A P P E N D I X

a.1 graph theory

a.1.1 Simple spectral properties of Kn

The computation of the characteristic polynomial of Ad(Kn) con-
sists in the determination of det(λ1n −Ad(Kn)), where Ad(Kn) is the
matrix in equation 2. This can be accomplished by observing that
Ad(Kn)ij = 1− δij by a root-by-root summation (due to compatibility
of the operators). The result is

Pn(λ) = (−)n(λ+ 1)(n−1)(λ− (n− 1)) (61)

from which follows the recurrence relation

P ′n = −nPn−1

One way of summarizing all this is by means of the exponential bi-
dimensional generating function Γ (λ, t) obtained by multiplying the
two sides of eq. (A.1.1) by tn

n! and then summing over n, the n-th
characteristic polynomial being Pn(λ) = ∂n

∂tn Γ(λ, t)|t=0.

-30

-20

-10

0

10

20

-2 -1 0 1 2 3 4 5 6

P1

P2

P3

P4

P5

Figure 24: Pn as defined in eq (61) for n = 1, . . . , 5 has nondegenerate integer
roots at n− 1.
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Recalling that P1 = −λ takes to the Cauchy problem{
∂Γ
∂λ = −tΓ
∂Γ
∂t |t=0 = −λ

whose solution is Γ(t, λ) = (1+ t)e−t(λ+1).

a.1.2 Hall’s or Marriage theorem

Theorem 4 (P.Hall 1935). In a bipartite graph GU,V where s = |U| 6 |V |

there exists a matching M such that |M| = s if and only if G satisfies Hall’s
condition.

Actually this theorem was proved in a different contest. A family
of sets {Si}

n
i=1, admits a system of distinct representatives if n distinct

elements ei, i = 1, . . . ,n can be chosen in such a way that ei ∈ Si i =
1, . . . ,n; in this setting the theorem states that the family {Si}

n
i=1 admits

a complete system of distinct representatives if and only if ∀m any union of
m Si’s has at least cardinality m.

In Hall, 1935 the author also deduces as a corollary the graph theo-
retic analogue of this theorem, the one of interest in this work, proved
by Konig almost 20 years earlier in König, 1916.

Proof. Necessity. If the condition fails there exists at least one W ⊆ U
with too few neighbors (i.e. |N(W)| < W). Then W cannot be matched
to any X ⊂ V and even more so U.

Sufficiency. Constructively by induction on s: the statement is clearly
true for s = 1; supposing the statement true at step s, that is, if in a
bipartite graph GU,V every U1 ⊂ U, |U| = s+ 1 with size at most s
satisfies Hall’s condition, then the entire U can be matched to V (step
s+ 1). There could be two cases.

every A ⊂ U satisfies hall’s condition strictly, |N(A) | > |A |

By hypothesis a vertex u ∈ U is such that |N(U) | > 2, so that
we can match it to one of its neighbors v ∈ V ; consider now
the bipartite graph G ′U\{u} ,V\{v} induced by the removal of the
edge uv. The set U ′ = U \ {u} then satisfies Hall’s condition,
which by induction hypothesis, implies that it can be matched
to V ′ = V \ {v} by a matching M ′ of cardinality s. We have
provided a matching M = M ′ ∪ uv , |M | = s + 1 for the entire
GU ,V .

there exists A ⊂ U for which |N(A) | = |A |

By induction hypothesis A can be matched by a matching M ′

to a subset of N(A), in fact the whole N(A) (since the two sets
have the same cardinality). Again consider the bipartite graph
G ′′U ′′ ,V ′′ , where U ′′ = U \ A and V ′′ = V \ N(A). Then an ar-
bitrary B ⊆ U ′′ satisfies Hall’s condition with its neighborhood
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in G ′′, namely |N(B) ∩ V ′′ | > |B |. Since B ∩ A = ∅ (and since
for hypothesis A ∪ B satisfies Hall’s condition) follows that

|N(A) | + |N(B) ∩ V ′′ | = |N(A ∪ B) | > |A ∪ B | = |A | + |B |

So G ′′ has a matching M ′′ and M ′ ∪M ′′ is a matching for the
whole G.

a.1.3 The Birkhoff-von Neumann theorem

Theorem 5. Every doubly stochastic matrix is a convex combination of n ×
n permutation matrices.

Proof. By simple algebraic properties of the matrix addition it is clear
that a convex combination of doubly stochastic matrices is doubly
stochastic. So the assignment polytope is closed under convex com-
binations. To prove the theorem is then sufficient to show that every
permutation matrices is the vertices of Birkhoff’s polytope. For this
purpose observe that every doubly stochastic matrix w is the weighted
adjacency matrix of a bipartite graph GU ,V , where U is associated to
rows and V to columns. This graph is in general a subgraph of Kn ,n

and, since any row or column of a doubly stochastic matrix sums to
1, the total weighted degree entering any vertices (the sum of weights
on links connecting a vertex u ∈ U to any neighbor v ∈ N(u) ⊆ V is
one. It is clear that GU ,V and satisfies Hall’s condition. Indeed, given
S ⊆ U

|N(S) | =
∑

vi∈N(S)⊆V
uj∈N(N(S))⊆U

wij >
∑

vi∈N(S)⊆V
uj∈S⊆U

wij =
∑
ui∈S

1

= |S |

(62)

By theorem 4 GU ,V has a perfect matching, say M1 . By choosing the
minimum weight λ0 entering the matching M1 consider the matrix

M1 = λ0P1 (63)

where P1 is the permutation matrix associated to matching M1 . It
follows that matrix

w ′ =
1

1 − λ0
w −M1 (64)

is again a doubly stochastic matrix, associated to a bipartite graph
G ′U ,V where the minimum weight link figuring in perfect matching
has been removed. This procedure can be repeated at most n2 (the
number of links in a bipartite graph Kn ,n), showing constructively
that it is possible to express every doubly stochastic matrix as a convex
combination of permutation matrices Pi with coefficients λi .
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a.2 rap and euclidean bipartite matching prob-
lem

a.2.1 The Brownian bridge

A Brownian bridge is the continuous stochastic process defined by

B(t) := W (t) − tW (1) t ∈ [0 , 1]

where W (t) is the standard Brownian motion on [0 , 1]. It is a centered
process with covariance

E(B(t ′)B(t)) =E
[(
W (t) +W (t ′) −W (t)

)
W (t)

]
− tt ′

=E(W2(t)) + E
[(
W (t ′) −W (t)

)
W (t)

]
− tt ′

=t(1 − t ′) if t 6 t ′

=t ′(1 − t) if t ′ 6 t
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Figure 25: Conditional probability density for
a Brownian bridge to be at height
y at time t=0.9 if it was at height
x at time t=0.7. Note that the den-
sity peaks under the bisector (the
dashed white line), telling that the
more the path departs from the
x(t)=0 axis, the higher is the prob-
ability of reverting back.

since W (τ) is a nor-
mal random variable with
variance τ whose incre-
ments are independent.
A modern reference for
the theory of continuous
time stochastic processes
and in particular Brow-
nian motion is Karatzas
and Shreve, 1998.

The realizations of this
process are maximally spread
at t = 1

2 , the motion be-
ing more and more deter-
ministic approaching the
t = 0 , 1.

A way to see how this
conditioning happens is
by mean of the condi-
tional probability to go at
height y at time s, com-
ing from height x at time
t (s > t):

p(B(s) = y |B(t) = x) =

p(B(t) = y , B(s) = x)

p(B(s) = x)
=

E [δ(B(t) − y)δ(B(s) − x)]

E [δ(B(s) = x)]
=

=

√
1 − t

2π(s − t)(1 − t)
e
− y2

2(1−s) −
(x−y)2

2(s−t) +
x2

2(1−t)

(65)
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